Giải bài 3.50 tr 166 SBT Hình học 10
Cho đường tròn (C): x2 + y2 - 2x - 6y + 6 = 0 và điểm M(2;4).
a) Chứng minh rằng điểm M nằm trong (C) ;
b) Viết phương trình đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của đoạn AB.
Hướng dẫn giải chi tiết
a) (C): x2 + y2 - 2x - 6y + 6 = 0
⇒ (C) có tâm I(1;3) và bán kính R = 2.
IM = \(\sqrt 2 \) < R ⇒ M nằm trong (C)
b) Đường thẳng d cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của đoạn thẳng AB ⇒ d ⊥ IM tại M
Phương trình đường thẳng (d) qua M(2;4) và nhận vectơ IM = (1; 1) làm vectơ pháp tuyến
⇒ d: 1.(x - 2) + 1.(y - 4) = 0
⇒ d: x + y - 6 = 0
-- Mod Toán 10 HỌC247
-
Tìm tọa độ các đỉnh của hình chữ nhật ABCD, biết phương trình CD: x - y - 10 = 0 và C có tung độ âm
bởi Nguyễn Hoài Thương 08/02/2017
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD, có AD = 2AB . Điểm \(H\left ( \frac{31}{5} ;\frac{17}{5}\right )\) là điểm đối xứng của điểm B qua đường chéo AC . Tìm tọa độ các đỉnh của hình chữ nhật
ABCD, biết phương trình CD: x - y - 10 = 0 và C có tung độ âm.
Theo dõi (0) 1 Trả lời -
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, với A (-2;5) trọng tâm \(G\left ( \frac{4}{3} ;\frac{5}{3}\right )\)
bởi Hương Lan 08/02/2017
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, với A (-2;5) trọng tâm \(G\left ( \frac{4}{3} ;\frac{5}{3}\right )\) tâm đường tròn ngoại tiếp I(2;2) .Viết phương trình đường thẳng chứa cạnh BC.
Theo dõi (0) 1 Trả lời -
Hãy xác định tọa độ hai đỉnh B, C và góc nhọn hợp bởi hai đường chéo của hình bình hành đã cho
bởi sap sua 08/02/2017
Trong mặt phẳng với hệ tọa độ (Oxy), cho hình bình hành ABCD có hai đỉnh A(-2;-1), D(5;0) và có tâm I(2;1). Hãy xác định tọa độ hai đỉnh B, C và góc nhọn hợp bởi hai đường chéo của hình bình hành đã cho.
Theo dõi (0) 1 Trả lời -
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) tâm I(x1 > 0), (C) đi qua điểm A(-2; 3) và tiếp xúc với đường thẳng (d1): x + y + 4 = 0 tại điểm B
bởi Anh Trần 08/02/2017
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) tâm I(x1 > 0), (C) đi qua điểm A(-2; 3) và tiếp xúc với đường thẳng (d1): x + y + 4 = 0 tại điểm B. (C) cắt (d2): 3x + 4y - 16 = 0 tại C và D sao cho ABCD là hình thang có hai đáy là AD và BC, hai đường chéo AC, BD vuông góc với nhau. Tìm tọa độ các điểm B, C, D.
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 3 trang 118 SGK Hình học 10 NC
Bài tập 4 trang 118 SGK Hình học 10 NC
Bài tập 5 trang 118 SGK Hình học 10 NC
Bài tập 6 trang 119 SGK Hình học 10 NC
Bài tập 7 trang 119 SGK Hình học 10 NC
Bài tập 8 trang 119 SGK Hình học 10 NC
Bài tập 9 trang 119 SGK Hình học 10 NC
Bài tập 10 trang 119 SGK Hình học 10 NC
Bài tập 11 trang 119 SGK Hình học 10 NC
Bài tập 12 trang 119 SGK Hình học 10 NC
Bài tập 13 trang 120 SGK Hình học 10 NC
Bài tập 14 trang 120 SGK Hình học 10 NC
Bài tập 3.37 trang 164 SBT Hình học 10
Bài tập 3.38 trang 165 SBT Hình học 10
Bài tập 3.39 trang 165 SBT Hình học 10
Bài tập 3.40 trang 165 SBT Hình học 10
Bài tập 3.41 trang 165 SBT Hình học 10
Bài tập 3.42 trang 165 SBT Hình học 10
Bài tập 3.43 trang 165 SBT Hình học 10
Bài tập 3.44 trang 165 SBT Hình học 10
Bài tập 3.45 trang 165 SBT Hình học 10
Bài tập 3.46 trang 166 SBT Hình học 10
Bài tập 3.47 trang 166 SBT Hình học 10
Bài tập 3.48 trang 166 SBT Hình học 10
Bài tập 3.49 trang 166 SBT Hình học 10
Bài tập 3.51 trang 166 SBT Hình học 10
Bài tập 3.52 trang 167 SBT Hình học 10
Bài tập 3.53 trang 167 SBT Hình học 10
Bài tập 3.54 trang 167 SBT Hình học 10
Bài tập 3.55 trang 167 SBT Hình học 10
Bài tập 3.56 trang 167 SBT Hình học 10
Bài tập 3.57 trang 167 SBT Hình học 10
Bài tập 3.58 trang 167 SBT Hình học 10
Bài tập 3.59 trang 167 SBT Hình học 10
Bài tập 3.60 trang 167 SBT Hình học 10
Bài tập 3.61 trang 168 SBT Hình học 10
Bài tập 1 trang 120 SGK Hình học 10 NC
Bài tập 3.62 trang 168 SBT Hình học 10
Bài tập 2 trang 120 SGK Hình học 10 NC
Bài tập 3 trang 120 SGK Hình học 10 NC
Bài tập 3.63 trang 168 SBT Hình học 10
Bài tập 4 trang 120 SGK Hình học 10 NC
Bài tập 5 trang 120 SGK Hình học 10 NC
Bài tập 3.64 trang 168 SBT Hình học 10
Bài tập 3.65 trang 168 SBT Hình học 10
Bài tập 3.66 trang 168 SBT Hình học 10
Bài tập 3.67 trang 168 SBT Hình học 10
Bài tập 6 trang 121 SGK Hình học 10 NC
Bài tập 7 trang 121 SGK Hình học 10 NC
Bài tập 8 trang 121 SGK Hình học 10 NC
Bài tập 9 trang 121 SGK Hình học 10 NC
Bài tập 10 trang 121 SGK Hình học 10 NC
Bài tập 11 trang 121 SGK Hình học 10 NC
Bài tập 12 trang 121 SGK Hình học 10 NC
Bài tập 13 trang 122 SGK Hình học 10 NC
Bài tập 14 trang 122 SGK Hình học 10 NC
Bài tập 15 trang 122 SGK Hình học 10 NC
Bài tập 16 trang 122 SGK Hình học 10 NC
Bài tập 17 trang 122 SGK Hình học 10 NC
Bài tập 18 trang 123 SGK Hình học 10 NC
Bài tập 3.68 trang 169 SBT Hình học 10
Bài tập 19 trang 123 SGK Hình học 10 NC
Bài tập 3.69 trang 169 SBT Hình học 10
Bài tập 20 trang 123 SGK Hình học 10 NC
Bài tập 3.70 trang 169 SBT Hình học 10
Bài tập 21 trang 123 SBT Hình học 10
Bài tập 3.71 trang 169 SBT Hình học 10
Bài tập 22 trang 123 SGK Hình học 10 NC
Bài tập 3.72 trang 169 SBT Hình học 10
Bài tập 23 trang 123 SGK Hình học 10 NC
Bài tập 3.73 trang 169 SBT Hình học 10
Bài tập 24 trang 123 SGK Hình học 10 NC
Bài tập 3.74 trang 169 SBT Hình học 10
Bài tập 3.75 trang 169 SBT Hình học 10
Bài tập 3.76 trang 170 SBT Hình học 10
Bài tập 3.77 trang 170 SBT Hình học 10
Bài tập 3.78 trang 170 SBT Hình học 10
Bài tập 3.79 trang 170 SBT Hình học 10
Bài tập 3.80 trang 170 SBT Hình học 10
Bài tập 3.81 trang 170 SBT Hình học 10
Bài tập 3.82 trang 170 SBT Hình học 10
Bài tập 3.83 trang 170 SBT Hình học 10
Bài tập 3.84 trang 171 SBT Hình học 10
Bài tập 3.85 trang 171 SBT Hình học 10
Bài tập 3.86 trang 171 SBT Hình học 10
Bài tập 3.87 trang 171 SBT Hình học 10
Bài tập 3.88 trang 171 SBT Hình học 10
Bài tập 3.89 trang 171 SBT Hình học 10
Bài tập 3.90 trang 171 SBT Hình học 10
Bài tập 3.91 trang 171 SBT Hình học 10
Bài tập 3.92 trang 172 SBT Hình học 10
Bài tập 3.93 trang 172 SBT Hình học 10
Bài tập 1 trang 93 SGK Hình học 10
Bài tập 2 trang 93 SGK Hình học 10
Bài tập 3 trang 93 SGK Hình học 10
Bài tập 4 trang 93 SGK Hình học 10
Bài tập 5 trang 93 SGK Hình học 10
Bài tập 6 trang 93 SGK Hình học 10