MOBILEAPP

Bài tập 7 trang 119 SGK Hình học 10 NC

Bài tập 7 trang 119 SGK Hình học 10 NC

a) Biết đường tròn (C) có phương trình x2+y2+2ax+2by+c = 0. Chứng minh rằng phương tích của điểm M(x0;y0) đối với đường tròn (C) bằng x20+y20+2ax0+2by0+c.

b) Chứng minh rằng nếu hai đường tròn không đồng tâm thì tập hợp các điểm có cùng phương tích đối với hai đường tròn là một đường thẳng (gọi là trục đẳng phương của hai đường tròn).

ADSENSE

Hướng dẫn giải chi tiết

a) Đường tròn (C) có tâm I(- a;- b), bán kính \(R = \sqrt {{a^2} + {b^2} - c} \)

Phương tích của điểm M(x0;y0) đối với đường tròn (C) là:

℘M/(C) = MI2−R2 = (xo+a)2+(yo+b)2−(a2+b2−c) = x2o+y2o+2axo+2byo+c

b) Cho hai đường tròn không đồng tâm

(C1): x2+y2+2a1x+2b1y+c1 = 0

(C2): x2+y2+2a2x+2b2y+c2 = 0

Gọi M(x0;y0) là điểm có cùng phương tích đối với (C1) và (C2) thì:

x2o+y2o+2a1xo+2b1yo+c= x2o+y2o+2a2xo+2b2yo+c2

⇔ 2(a1−a2)xo+2(b1−b2)yo+c1−c2 = 0   (1)

Vì (C1) và (C2) không đồng tâm nên a1−avà b1−bkhông đồng thời bằng 0 (tức (a1−a2)2+(b1−b2)2 ≠ 0)

Do đó M(x0;y0) nằm trên đường thẳng có phương trình:

Δ: 2(a1−a2)x+2(b1−b2)y+c1−c2 = 0

Vậy tập hợp điểm M là đường thẳng Δ .

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7 trang 119 SGK Hình học 10 NC HAY thì click chia sẻ 
YOMEDIA
  • Van Tho

    Trên mặt phẳng tọa độ Oxy, cho hình vuông ABCD có cạnh bằng \(4\sqrt{5}\). Gọi M N , lần lượt là các điểm trên cạnh AD, AB sao cho AM = AN, điểm \(H(-\frac{12}{13};\frac{70}{13})\) là hình chiếu vuông góc của A trên đường thẳng BM. Điểm C (-8;2), điểm N thuộc đường thẳng x - 2y = 0. Tìm tọa độ các điểm
    A,B, D.

    Theo dõi (0) 1 Trả lời
  • Mai Thuy

    Khó quá, em bỏ cuộc rồi, mọi người giúp vs! Em cảm ơn nhiều ạ.

    Trong mặt phẳng tọa độ Oxy, cho hình thang cân ABCD (AB // CD) có đỉnh A(2;-1). Giao điểm hai đường chéo AC BD là điểm I(1;2). Đường tròn ngoại tiếp tam giác ADI có tâm là \(E\left ( -\frac{27}{9};-\frac{9}{8} \right )\). Biết đường thẳng BC đi qua điểm M (9;-6). Tìm tọa độ đỉnh B D, biết điểm B có tung độ nhỏ hơn 3.
     

    Theo dõi (0) 1 Trả lời

 

YOMEDIA