Giải bài 2 tr 45 sách GK Toán GT lớp 12
Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm. Tìm các cực trị của hàm số \(y=x^4-2x^2+2\).
Hướng dẫn giải chi tiết bài 2
Các cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:
Quy tắc 1:
- Tìm tập xác định.
- Tính \(f'(x)\). Tìm các điểm tại đó\(f'(x)=0\) hoặc \(f'(x)\) không xác định.
- Lập bảng biến thiên.
- Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
- Tìm tập xác định.
- Tính \(f'(x)\). Tìm các nghiệm \({x_i}\) của phương trình \(f'(x)=0\).
- Tính \(f''(x)\) và \(f''(x_i)\) suy ra tính chất cực trị của các điểm \({x_i}\).
Chú ý: Nếu \(f''(x_i)=0\) thì ta phải dùng quy tắc 1 để xét cực trị tại \({x_i}\).
Tìm cực trị của hàm số \(y=x^4-2x^2+2\)
Xét hàm số: \(y=x^4-2x^2+2\)
Tập xác định: D = R
\(y'=4x^3-4x,y'=0\Leftrightarrow 4x^3-4x=0\)
\(\Leftrightarrow \bigg \lbrack \begin{matrix} x=-1\\ x=0\\ x=1 \end{matrix}\)
Xét dấy y':
Vậy hàm số đạt cực đại tại x = 0, giá trị cực đại yCĐ = y(0) = 2; đạt cực tiểu tại x = -1 và x = 1, giá trị cực tiểu yCT = y(\(\pm\)1) =1.
-- Mod Toán 12 HỌC247
-
Hãy cho biết giá trị của tham số \(m\) để phương trình \(2{x^3} + 3m{x^2} - 5 = 0\) có nghiệm duy nhất.
bởi Nguyễn Hồng Tiến 26/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết giá trị của tham số \(m\) để hàm số \(y = {x^3} + m{x^2}-3\) có cực đại và cực tiểu.
bởi Hoàng Anh 25/09/2022
Theo dõi (0) 1 Trả lời -
Hãy xác định số giao điểm của đồ thị hàm số \(y = \left( {x - 3} \right)\left( {{x^2} + x + 4} \right)\) với trục hoành
bởi Huy Tâm 26/09/2022
Theo dõi (0) 1 Trả lời -
Xác định tọa độ giao điểm của đồ thị các hàm số \(y = \dfrac{{{x^2} - 2x - 3}}{{x - 2}}\) và \(y = x + 1\)
bởi Nguyễn Hạ Lan 25/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết hàm số \(y = \dfrac{{x - 2}}{{x + 3}}\). Khẳng định cho nào sau đây là đúng?
bởi Nguyễn Thủy 25/09/2022
Theo dõi (0) 1 Trả lời -
Cho biết giá trị lớn nhất của hàm số \(y = \dfrac{4}{{{x^2} + 2x + 3}}\)
bởi Nguyễn Thị Lưu 26/09/2022
Theo dõi (0) 1 Trả lời -
Em hãy cho biết hoành độ các điểm cực tiểu của hàm số \(y = {x^4} + 3{x^2} + 2\)
bởi Lê Tấn Thanh 26/09/2022
Theo dõi (0) 1 Trả lời -
Em hãy xác định giá trị của tham số \(m\) để hàm số \(y = \dfrac{{{x^2} + \left( {m + 1} \right)x - 1}}{{2 - x}}\) nghịch biến trên mỗi khoảng xác định của nó.
bởi minh vương 25/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 1 trang 45 SGK Giải tích 12
Bài tập 3 trang 45 SGK Giải tích 12
Bài tập 4 trang 45 SGK Giải tích 12
Bài tập 5 trang 45 SGK Giải tích 12
Bài tập 6 trang 45 SGK Giải tích 12
Bài tập 7 trang 45 SGK Giải tích 12
Bài tập 8 trang 46 SGK Giải tích 12
Bài tập 9 trang 46 SGK Giải tích 12
Bài tập 10 trang 46 SGK Giải tích 12
Bài tập 11 trang 46 SGK Giải tích 12
Bài tập 12 trang 47 SGK Giải tích 12
Bài tập 1 trang 47 SGK Giải tích 12
Bài tập 2 trang 47 SGK Giải tích 12
Bài tập 3 trang 47 SGK Giải tích 12
Bài tập 4 trang 47 SGK Giải tích 12
Bài tập 5 trang 47 SGK Giải tích 12
Bài tập 1.75 trang 39 SBT Toán 12
Bài tập 1.76 trang 40 SBT Toán 12
Bài tập 1.77 trang 40 SBT Toán 12
Bài tập 1.78 trang 40 SBT Toán 12
Bài tập 1.79 trang 40 SBT Toán 12
Bài tập 1.80 trang 40 SBT Toán 12
Bài tập 1.81 trang 41 SBT Toán 12
Bài tập 1.82 trang 41 SBT Toán 12
Bài tập 1.83 trang 41 SBT Toán 12
Bài tập 1.84 trang 41 SBT Toán 12
Bài tập 1.85 trang 41 SBT Toán 12
Bài tập 1.86 trang 41 SBT Toán 12
Bài tập 1.87 trang 41 SBT Toán 12
Bài tập 1.88 trang 42 SBT Toán 12
Bài tập 1.89 trang 42 SBT Toán 12
Bài tập 1.90 trang 42 SBT Toán 12
Bài tập 1.91 trang 42 SBT Toán 12
Bài tập 1.92 trang 42 SBT Toán 12
Bài tập 1.93 trang 42 SBT Toán 12
Bài tập 1.94 trang 42 SBT Toán 12
Bài tập 1.95 trang 43 SBT Toán 12
Bài tập 1.96 trang 43 SBT Toán 12
Bài tập 68 trang 61 SGK Toán 12 NC
Bài tập 69 trang 61 SGK Toán 12 NC
Bài tập 70 trang 61 SGK Toán 12 NC
Bài tập 71 trang 62 SGK Toán 12 NC
Bài tập 72 trang 62 SGK Toán 12 NC
Bài tập 73 trang 62 SGK Toán 12 NC
Bài tập 74 trang 62 SGK Toán 12 NC
Bài tập 75 trang 62 SGK Toán 12 NC
Bài tập 76 trang 62 SGK Toán 12 NC
Bài tập 77 trang 62 SGK Toán 12 NC
Bài tập 78 trang 62 SGK Toán 12 NC
Bài tập 79 trang 62 SGK Toán 12 NC
Bài tập 80 trang 64 SGK Toán 12 NC
Bài tập 81 trang 64 SGK Toán 12 NC
Bài tập 82 trang 64 SGK Toán 12 NC
Bài tập 83 trang 64 SGK Toán 12 NC
Bài tập 84 trang 65 SGK Toán 12 NC
Bài tập 85 trang 65 SGK Toán 12 NC
Bài tập 86 trang 65 SGK Toán 12 NC
Bài tập 87 trang 65 SGK Toán 12 NC
Bài tập 88 trang 65 SGK Toán 12 NC
Bài tập 89 trang 65 SGK Toán 12 NC
Bài tập 90 trang 65 SGK Toán 12 NC
Bài tập 91 trang 65 SGK Toán 12 NC
Bài tập 92 trang 66 SGK Toán 12 NC
Bài tập 93 trang 66 SGK Toán 12 NC
Bài tập 94 trang 66 SGK Toán 12 NC
Bài tập 95 trang 66 SGK Toán 12 NC
Bài tập 96 trang 66 SGK Toán 12 NC
Bài tập 97 trang 67 SGK Toán 12 NC
Bài tập 98 trang 67 SGK Toán 12 NC