Giải bài 3 tr 47 sách GK Toán GT lớp 12
Số đường tiệm cận của đồ thị hàm số \(y=\frac{1-x}{1+x}\) là:
(A) 1;
(B) 2;
(C) 3;
(D) 0;
Gợi ý trả lời bài 3
Đồ thị hàm số \(y=\frac{1-x}{1+x}\) có một tiệm cận ngang là đường thẳng y = -1 và một tiệm cận đứng là đường thẳng x= - 1.
⇒ Chọn đáp án B.
-- Mod Toán 12 HỌC247
-
Chứng minh bất đẳng thức sau: \(\tan x > x,\,\forall x \in \left( {0;{\pi \over 2}} \right)\).
bởi Chai Chai 02/06/2021
Chứng minh bất đẳng thức sau: \(\tan x > x,\,\forall x \in \left( {0;{\pi \over 2}} \right)\).
Theo dõi (0) 1 Trả lời -
Tìm các hệ số \(a, b\) sao cho parabol \(y = 2{x^2} + ax + b\) tiếp xúc với hypebol \(y = {1 \over x}\) tại điểm \(M\left( {{1 \over 2};2} \right)\).
bởi Ha Ku 02/06/2021
Tìm các hệ số \(a, b\) sao cho parabol \(y = 2{x^2} + ax + b\) tiếp xúc với hypebol \(y = {1 \over x}\) tại điểm \(M\left( {{1 \over 2};2} \right)\).
Theo dõi (0) 1 Trả lời -
Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\). Khảo sát sự biến thiên và vẽ đồ thị của hàm số với các giá trị của \(a\) và \(b\) đã tìm được.
bởi Choco Choco 02/06/2021
Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\). Khảo sát sự biến thiên và vẽ đồ thị của hàm số với các giá trị của \(a\) và \(b\) đã tìm được.
Theo dõi (0) 1 Trả lời -
Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\). Tìm \(a\) và \(b\) biết rằng đồ thị \((C)\) của hàm số đã cho đi qua điểm \(A\left( { - 1;{5 \over 2}} \right)\) và tiếp tuyến của \((C)\) tại điểm \(O(0;0)\) có hệ số bằng \(-3\).
bởi thanh duy 02/06/2021
Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\). Tìm \(a\) và \(b\) biết rằng đồ thị \((C)\) của hàm số đã cho đi qua điểm \(A\left( { - 1;{5 \over 2}} \right)\) và tiếp tuyến của \((C)\) tại điểm \(O(0;0)\) có hệ số bằng \(-3\).
Theo dõi (0) 1 Trả lời -
Khảo sát sự biến thiên và vẽ đồ thị \((H)\) của hàm số: \(y = {{x + 2} \over {2x + 1}}\).
bởi Ngoc Han 01/06/2021
Khảo sát sự biến thiên và vẽ đồ thị \((H)\) của hàm số: \(y = {{x + 2} \over {2x + 1}}\).
Theo dõi (0) 1 Trả lời -
Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x - 1} \over {x + 1}}\).
bởi Nguyễn Hồng Tiến 01/06/2021
Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x - 1} \over {x + 1}}\).
Theo dõi (0) 1 Trả lời -
Chứng minh rằng các đồ thị của hai hàm số: \(f\left( x \right) = {{{x^2}} \over 2} + {3 \over 2}x\) và \(g\left( x \right) = {{3x} \over {x + 2}}\) tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp tuyến chung tại điểm đó.
bởi Lê Gia Bảo 02/06/2021
Chứng minh rằng các đồ thị của hai hàm số: \(f\left( x \right) = {{{x^2}} \over 2} + {3 \over 2}x\) và \(g\left( x \right) = {{3x} \over {x + 2}}\) tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp tuyến chung tại điểm đó.
Theo dõi (0) 1 Trả lời -
Chứng minh rằng các đồ thị của ba hàm số: \(f\left( x \right) = - {x^2} + 3x + 6\); \(g\left( x \right) = {x^3} - {x^2} + 4\) và \(h\left( x \right) = {x^2} + 7x + 8\) tiếp xúc với nhau tại điểm \(A(-1;2)\) (tức là chúng có cùng tiếp tuyến tại \(A\)).
bởi Hoa Hong 02/06/2021
Chứng minh rằng các đồ thị của ba hàm số: \(f\left( x \right) = - {x^2} + 3x + 6\); \(g\left( x \right) = {x^3} - {x^2} + 4\) và \(h\left( x \right) = {x^2} + 7x + 8\) tiếp xúc với nhau tại điểm \(A(-1;2)\) (tức là chúng có cùng tiếp tuyến tại \(A\)).
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 12 trang 47 SGK Giải tích 12
Bài tập 1 trang 47 SGK Giải tích 12
Bài tập 2 trang 47 SGK Giải tích 12
Bài tập 4 trang 47 SGK Giải tích 12
Bài tập 5 trang 47 SGK Giải tích 12
Bài tập 1.75 trang 39 SBT Toán 12
Bài tập 1.76 trang 40 SBT Toán 12
Bài tập 1.77 trang 40 SBT Toán 12
Bài tập 1.78 trang 40 SBT Toán 12
Bài tập 1.79 trang 40 SBT Toán 12
Bài tập 1.80 trang 40 SBT Toán 12
Bài tập 1.81 trang 41 SBT Toán 12
Bài tập 1.82 trang 41 SBT Toán 12
Bài tập 1.83 trang 41 SBT Toán 12
Bài tập 1.84 trang 41 SBT Toán 12
Bài tập 1.85 trang 41 SBT Toán 12
Bài tập 1.86 trang 41 SBT Toán 12
Bài tập 1.87 trang 41 SBT Toán 12
Bài tập 1.88 trang 42 SBT Toán 12
Bài tập 1.89 trang 42 SBT Toán 12
Bài tập 1.90 trang 42 SBT Toán 12
Bài tập 1.91 trang 42 SBT Toán 12
Bài tập 1.92 trang 42 SBT Toán 12
Bài tập 1.93 trang 42 SBT Toán 12
Bài tập 1.94 trang 42 SBT Toán 12
Bài tập 1.95 trang 43 SBT Toán 12
Bài tập 1.96 trang 43 SBT Toán 12
Bài tập 68 trang 61 SGK Toán 12 NC
Bài tập 69 trang 61 SGK Toán 12 NC
Bài tập 70 trang 61 SGK Toán 12 NC
Bài tập 71 trang 62 SGK Toán 12 NC
Bài tập 72 trang 62 SGK Toán 12 NC
Bài tập 73 trang 62 SGK Toán 12 NC
Bài tập 74 trang 62 SGK Toán 12 NC
Bài tập 75 trang 62 SGK Toán 12 NC
Bài tập 76 trang 62 SGK Toán 12 NC
Bài tập 77 trang 62 SGK Toán 12 NC
Bài tập 78 trang 62 SGK Toán 12 NC
Bài tập 79 trang 62 SGK Toán 12 NC
Bài tập 80 trang 64 SGK Toán 12 NC
Bài tập 81 trang 64 SGK Toán 12 NC
Bài tập 82 trang 64 SGK Toán 12 NC
Bài tập 83 trang 64 SGK Toán 12 NC
Bài tập 84 trang 65 SGK Toán 12 NC
Bài tập 85 trang 65 SGK Toán 12 NC
Bài tập 86 trang 65 SGK Toán 12 NC
Bài tập 87 trang 65 SGK Toán 12 NC
Bài tập 88 trang 65 SGK Toán 12 NC
Bài tập 89 trang 65 SGK Toán 12 NC
Bài tập 90 trang 65 SGK Toán 12 NC
Bài tập 91 trang 65 SGK Toán 12 NC
Bài tập 92 trang 66 SGK Toán 12 NC
Bài tập 93 trang 66 SGK Toán 12 NC
Bài tập 94 trang 66 SGK Toán 12 NC
Bài tập 95 trang 66 SGK Toán 12 NC
Bài tập 96 trang 66 SGK Toán 12 NC
Bài tập 97 trang 67 SGK Toán 12 NC
Bài tập 98 trang 67 SGK Toán 12 NC