YOMEDIA
NONE

Bài tập 98 trang 151 SBT Toán 7 Tập 1

Giải bài 98 tr 151 sách BT Toán lớp 7 Tập 1

Tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM\) là tia phân giác của góc \(A.\) Chứng minh rằng tam giác \(ABC\) là tam giác cân.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

- Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

- Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Lời giải chi tiết

Kẻ \(MH \bot AB,MK \bot AC\) \((H\in AB, K\in AC)\). 

Xét hai tam giác vuông \(AHM\) và \(AKM\) có:

\(\widehat {AHM} = \widehat {AKM} = 90^\circ \)

\(\widehat {HAM} = \widehat {KAM}\) (vì \(AM\) là tia phân giác góc \(A\))

\(AM\) cạnh chung  

\( \Rightarrow  ∆AHM = ∆AKM\) (cạnh huyền - góc nhọn).

\( \Rightarrow MH = MK\) (hai cạnh tương ứng).

Xét hai tam giác vuông \(MHB\) và \(MKC\) có:

\(\widehat {MHB} = \widehat {MKC} = 90^\circ \)

\(MH = MK\) (chứng minh trên)

\(MB = MC\) (vì \(M\) là trung điểm của \(BC\))

\( \Rightarrow ∆MHB = ∆MKC\) (cạnh huyền - cạnh góc vuông).

\( \Rightarrow \widehat B = \widehat C\) (hai góc tương ứng).

Vậy \(∆ABC\) cân tại \(A.\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 98 trang 151 SBT Toán 7 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON