Phần hướng dẫn giải bài tập SGK Hình học 7 Bài 8 Các trường hợp bằng nhau của tam giác vuông sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các dạng bài tập từ SGK Toán 7 Tập một.
-
Bài tập 63 trang 136 SGK Toán 7 Tập 1
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (\(H \in BC\)). Chứng minh rằng:
a) HB = HC
b) \(\widehat {BAH} = \widehat {CAH}\)
-
Bài tập 64 trang 136 SGK Toán 7 Tập 1
Các tam giác vuông ABC và DEF có \(\widehat A = \widehat D = {90^o},AC = DF\). Hãy bổ sung thêm một điều kiện bằng nhau (về cạnh hay về góc) để \(\Delta ABC = \Delta D{\rm{EF}}\)
-
Bài tập 65 trang 137 SGK Toán 7 Tập 1
Cho tam giác ABC cân tại A (\(\widehat A < {90^o}\)). Vẽ \(BH \bot AC\,\,\left( {H \in AC} \right)\), \(CK \bot AB\,\,\left( {K \in AB} \right)\)
a) Chứng minh rằng AH = AK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là tia phân giác của góc A.
-
Bài tập 66 trang 137 SGK Toán 7 Tập 1
Tìm các tam giác bằng nhau trên hình 148:
-
Bài tập 93 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC\) cân tại \(A.\) Kẻ \(AD\) vuông góc với \(BC.\) Chứng minh rằng \(AD\) là tia phân giác của góc \(A.\)
-
Bài tập 94 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC\) cân tại \(A.\) Kẻ \(BD\) vuông góc với \(AC,\) kẻ \(CE\) vuông góc với \(AB.\) Gọi \(K\) là giao điểm của \(BD\) và \(CE.\) Chứng minh rằng \(AK\) là tia phân giác của góc \(A.\)
-
Bài tập 95 trang 151 SBT Toán 7 Tập 1
Tam giác \(ABC\) có \(M\) là trung điểm của \(BC, AM\) là tia phân giác của góc \(A.\) Kẻ \(MH\) vuông góc với \(AB, MK\) vuông góc với \(AC.\) Chứng minh rằng:
a) \(MH = MK\).
b) \(\widehat B = \widehat C\).
-
Bài tập 96 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC\) cân tại \(A.\) Các đường trung trực của \(AB, AC\) cắt nhau ở \(I.\) Chứng minh rằng \(AI\) là tia phân giác của góc \(A.\)
-
Bài tập 97 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC\) cân tại \(A.\) Qua \(B\) kẻ đường thẳng vuông góc với \(AB\), qua \(C\) kẻ đường vuông góc với \(AC\), chúng cắt nhau tại \(D\). Chứng minh rằng \(AD\) là tia phân giác của góc \(A.\)
-
Bài tập 98 trang 151 SBT Toán 7 Tập 1
Tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM\) là tia phân giác của góc \(A.\) Chứng minh rằng tam giác \(ABC\) là tam giác cân.
-
Bài tập 99 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(BC\) lấy điểm \(D\), trên tia đối của tia \(CB\) lấy điểm \(E\) sao cho \(BD = CE.\) Kẻ \(BH\) vuông góc với \(AD,\) kẻ \(CK\) vuông góc với \(AE.\) Chứng minh rằng:
a) \(BH = CK\)
b) \(∆ABH = ∆ACK\)
-
Bài tập 100 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC.\) Các tia phân giác của các góc \(B\) và \(C\) cắt nhau tại \(I.\) Chứng minh rằng \(AI\) là tia phân giác của góc \(A.\)
Hướng dẫn: Từ \(I\) kẻ các đường thẳng vuông góc với các cạnh của tam giác \(ABC.\)
-
Bài tập 101 trang 151 SBT Toán 7 Tập 1
Cho tam giác \(ABC\) có \(AB < AC.\) Tia phân giác của góc \(A\) cắt đường trung trực của \(BC\) tại \(I.\) Kẻ \(IH\) vuông góc với đường thẳng \(AB\), kẻ \(IK\) vuông góc với đường thẳng \(AC.\) Chứng minh rằng \(BH = CK.\)