YOMEDIA
NONE

Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\). Tìm \(a\) và \(b\) biết rằng đồ thị \((C)\) của hàm số đã cho đi qua điểm \(A\left( { - 1;{5 \over 2}} \right)\) và tiếp tuyến của \((C)\) tại điểm \(O(0;0)\) có hệ số bằng \(-3\).

Cho hàm số \(y = {{a{x^2} - bx} \over {x - 1}}\). Tìm \(a\) và \(b\) biết rằng đồ thị \((C)\) của hàm số đã cho đi qua điểm \(A\left( { - 1;{5 \over 2}} \right)\) và tiếp tuyến của \((C)\) tại điểm \(O(0;0)\) có hệ số bằng \(-3\). 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(y' = {{\left( {2ax - b} \right)\left( {x - 1} \right) - \left( {a{x^2} - bx} \right)} \over {{{\left( {x - 1} \right)}^2}}}\) \(= \frac{{a{x^2} - 2ax + b}}{{{{\left( {x - 1} \right)}^2}}}\)

    Đồ thị \((C)\) đi qua \(A\left( { - 1;{5 \over 2}} \right)\) \( \Leftrightarrow y\left( { - 1} \right) = {5 \over 2} \Leftrightarrow {{a + b} \over { - 2}} = {5 \over 2} \) \(\Leftrightarrow a + b =  - 5\,\,\,\left( 1 \right)\)

    Tiếp tuyến của \((C)\) tại \(O(0;0)\) có hệ số góc bằng \(-3\) khi và chỉ khi \(y’(0) = -3 \) \( \Leftrightarrow \frac{{a{{.0}^2} - 2a.0 + b}}{{{{\left( {0 - 1} \right)}^2}}} =  - 3\) \( \Leftrightarrow b =  - 3\,\,\left( 2 \right)\)

    Từ (1) và (2) suy ra \(a = -2; b = - 3\). 

      bởi Thùy Trang 02/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON