YOMEDIA
NONE

Bài tập 70 trang 147 SBT Toán 7 Tập 1

Giải bài 70 tr 147 sách BT Toán lớp 7 Tập 1

Cho tam giác \(ABC\) cân tại \(A.\) Lấy điểm \(H\) thuộc cạnh \(AC,\) điểm \(K\) thuộc cạnh \(AB\) sao cho \(AH = AK .\) Gọi \(O\) là giao điểm của \( BH\) và \(CK.\) Chứng minh rằng \(∆OBC\) là tam giác cân.

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

- Tam giác cân có hai cạnh bên bằng nhau, hai góc đáy bằng nhau.

- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

Xét \( ∆ABH\) và \(∆ACK\) có:

+) \(AB = AC\) (vì tam giác \(ABC \) cân tại \( A\))

+) \(\widehat A\) chung

+) \(AH = AK\) (gt)

\(\Rightarrow ∆ABH = ∆ACK\) (c.g.c)

\(\Rightarrow \widehat {{B_1}} = \widehat {{C_1}}\) (hai góc tương ứng)    (1)

Ta có: 

\(\eqalign{
& \widehat {ABC} = \widehat {{B_1}} + \widehat {{B_2}}\;\;\;\left( 2 \right) \cr 
& \widehat {ACB} = \widehat {{C_1}} + \widehat {{C_2}}\;\;\;\left( 3 \right) \cr} \)

\(\widehat {ABC} = \widehat {ACB}\) (vì tam giác \(ABC \) cân tại \( A\))  (4)

Từ (1), (2), (3) và (4) suy ra \(\widehat {{B_2}} = \widehat {{C_2}}\) hay \(∆OBC\) cân tại \(O.\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 70 trang 147 SBT Toán 7 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON