YOMEDIA

Bài tập 8 trang 145 SGK Giải tích 12

Giải bài 8 tr 145 sách GK Toán GT lớp 12

Nêu định nghĩa và các phương pháp tính nguyên hàm.

ADSENSE

Hướng dẫn giải chi tiết bài 8

Khái niệm nguyên hàm:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)

Định nghĩa:

Cho hàm số \(f(x)\) xác định trên K.

Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)

Định lý 1:

Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.

Định lý 2:

Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.

Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)

Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)

Các phương pháp tính nguyên hàm:

Phương pháp đổi biến số:

Định lí 1:

Cơ sở của phương pháp đổi biến số là định lý sau: Cho hàm số \(u = u(x)\) có đạo hàm và liên tục trên K và hàm số \(y = f({\rm{u)}}\) liên tục sao cho \(f[u(x)]\) xác định trên K. Khi đó nếu \(F\) là một nguyên hàm của \(f\), tức là \(\int {f(u)du = F(u) + C}\) thì \(\int {f[u(x){\rm{]dx = F[u(x)] + C}}}.\)

Hệ quả:

Với \(u = ax + b\,(a \ne 0),\) ta có:

\(\int {f(ax + b)dx} = \frac{1}{a}F(ax + b) + C\)

Phương pháp tính nguyên hàm từng phần:

Định lí 2: 

Nếu hai hàm số \(u=u(x)\) và \(v=v(x)\) có đạo hàm và liên tục trên K thì:

\(\int {u(x)v'(x)dx} = u(x)v(x) - \int {u'(x)v(x)dx}\)

Một số dạng thường gặp:

  • Dạng 1: \(\int {P(x).{e^{{\rm{ax}} + b}}dx\,,\,\,\int {P(x)\sin ({\rm{ax}} + b)dx\,,\,\int {P(x)c{\rm{os}}({\rm{ax}} + b)dx} } }\)

Cách giải: Đặt \(u = P(x)\,,\,dv = {e^{{\rm{ax}} + b}}dx\,\) hoặc \(dv = \sin (ax + b)dx,\,\,dv = \cos (ax + b)dx.\)

  • Dạng 2: \(\int {P(x)\ln ({\rm{ax}} + b)dx}\)

Cách giải: Đặt \(u = \ln ({\rm{ax}} + b)\,,\,dv = P(x)dx.\)

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 8 trang 145 SGK Giải tích 12 HAY thì click chia sẻ 

 

YOMEDIA