Giải bài 2 tr 91 sách GK Toán Hình lớp 12
Cho mặt cầu (S) có đường kính là AB biết rằng A(6; 2; -5), B(-4; 0; 7)
a) Tìm tọa độ tâm I và bán kính r của mặt cầu (S).
b) Lập phương trình của mặt cầu (S).
c) Lập phương trình của mặt phẳng (\(\alpha\)) tiếp xúc với mặt cầu (S) tại điểm A.
Hướng dẫn giải chi tiết bài 2
Phương pháp:
- Câu a: Tâm I của mặt cầu (S) có đường kính AB là trung điểm của AB.
- Câu b: Trong không gian Oxyz, mặt cầu tâm I(a;b;c), bán kính R có phương trình: \((x-a)^2+(y-b)^2+(z-c)^2=R^2.\)
- Mặt phẳng (\(\alpha\)) tiếp xúc với mặt cầu (S) có tâm I tại điểm A suy ra \(IA \bot \left ( \alpha \right )\). Nên \(\overrightarrow{IA}\) là một VTPT của \(\left ( \alpha \right )\).
Lời giải:
Lời giải chi tiết câu a, b, c bài 2 như sau:
Câu a:
Tâm I của mặt cầu (S) có đường kính AB là trung điểm của AB.
Tọa độ điểm I là: \(\left\{ \begin{array}{l} {x_I} = \frac{{{x_A} + {x_B}}}{2}\\ {y_I} = \frac{{{y_A} + {y_B}}}{2}\\ {z_I} = \frac{{{z_A} + {z_B}}}{2} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {x_I} = 1\\ {y_I} = 1\\ {z_I} = 1 \end{array} \right.\)
Ta có I(1;1;1), bán kính \(r=IA=\sqrt{62}\).
Câu b:
Phương trình của mặt cầu (S) có tâm I(1;1;1), bán kính \(r=\sqrt{62}\) là:
\((x-1)^2+(y-1)^2+(z-1)^2=62\)
Câu c:
Mặt phẳng (\(\alpha\)) tiếp xúc với mặt cầu (S) tại A, suy ra (\(\alpha\)) có vectơ pháp tuyến là \(\overrightarrow{IA}=(5;1;-6)\)
Vậy phương trình của mặt phẳng (\(\alpha\)) là:
\(5(x-6)+(y-2)-6(z+5)=0\Leftrightarrow 5x+y-6z-62=0\)
-- Mod Toán 12 HỌC247
-
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Viết phương trình các mặt phẳng tiếp xúc với mặt cầu (S) tại M, N. Tính góc tạo bởi hai mặt phẳng đó.
bởi Lê Minh Bảo Bảo 25/05/2021
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Viết phương trình các mặt phẳng tiếp xúc với mặt cầu (S) tại M, N. Tính góc tạo bởi hai mặt phẳng đó.
Theo dõi (0) 1 Trả lời -
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Tìm tọa độ các giao điểm M, N của đường thẳng d với mặt cầu (S).
bởi My Van 24/05/2021
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Tìm tọa độ các giao điểm M, N của đường thẳng d với mặt cầu (S).
Theo dõi (0) 1 Trả lời -
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
bởi Ban Mai 25/05/2021
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
Theo dõi (0) 1 Trả lời -
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Tính thể tích khối tứ diện ABCD.
bởi Nhi Nhi 24/05/2021
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Tính thể tích khối tứ diện ABCD.
Theo dõi (0) 1 Trả lời -
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Chứng minh A, B, C, D là bốn đỉnh của 1 tứ diện.
bởi Nguyễn Thị An 24/05/2021
Trong không gian tọa độ Oxyz cho bốn điểm A(-2; 1; 2), B(0; 4; 1), C(5;1;-5), D(-2; 8; -5) và đường thẳng \(d:{{x + 5} \over 3} = {{y + 11} \over 5} = {{z - 9} \over { - 4}}.\) Chứng minh A, B, C, D là bốn đỉnh của 1 tứ diện.
Theo dõi (0) 1 Trả lời -
Trong không gian tọa độ Oxyz cho đường thẳng: \(\Delta :\left\{ \matrix{ x = 3 + t \hfill \cr y = - 1 + 2t \hfill \cr z = 4 \hfill \cr} \right.\) Gọi \(\Delta '\) là giao tuyến của 2 mặt phẳng: \((\alpha ):x - 3y + z = 0\) và \((\alpha '):x + y - z + 4 = 0\) và điểm \(M_0 (1; 1; 2)\). Viết phương trình đường thẳng vuông góc chung của \(\Delta\) và \(\Delta '\)
bởi Anh Thu 25/05/2021
Trong không gian tọa độ Oxyz cho đường thẳng: \(\Delta :\left\{ \matrix{ x = 3 + t \hfill \cr y = - 1 + 2t \hfill \cr z = 4 \hfill \cr} \right.\) Gọi \(\Delta '\) là giao tuyến của 2 mặt phẳng: \((\alpha ):x - 3y + z = 0\) và \((\alpha '):x + y - z + 4 = 0\) và điểm \(M_0 (1; 1; 2)\). Viết phương trình đường thẳng vuông góc chung của \(\Delta\) và \(\Delta '\)
Theo dõi (0) 1 Trả lời -
Trong không gian tọa độ Oxyz cho đường thẳng: \(\Delta :\left\{ \matrix{ x = 3 + t \hfill \cr y = - 1 + 2t \hfill \cr z = 4 \hfill \cr} \right.\) Gọi \(\Delta '\) là giao tuyến của 2 mặt phẳng: \((\alpha ):x - 3y + z = 0\) và \((\alpha '):x + y - z + 4 = 0\) và điểm \(M_0 (1; 1; 2)\). Tính khoảng cách giữa \(\Delta\) và \(\Delta '\)
bởi Dell dell 25/05/2021
Trong không gian tọa độ Oxyz cho đường thẳng: \(\Delta :\left\{ \matrix{ x = 3 + t \hfill \cr y = - 1 + 2t \hfill \cr z = 4 \hfill \cr} \right.\) Gọi \(\Delta '\) là giao tuyến của 2 mặt phẳng: \((\alpha ):x - 3y + z = 0\) và \((\alpha '):x + y - z + 4 = 0\) và điểm \(M_0 (1; 1; 2)\). Tính khoảng cách giữa \(\Delta\) và \(\Delta '\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 1 trang 91 SGK Hình học 12
Bài tập 3 trang 92 SGK Hình học 12
Bài tập 4 trang 92 SGK Hình học 12
Bài tập 5 trang 92 SGK Hình học 12
Bài tập 6 trang 92 SGK Hình học 12
Bài tập 7 trang 92 SGK Hình học 12
Bài tập 8 trang 93 SGK Hình học 12
Bài tập 9 trang 93 SGK Hình học 12
Bài tập 10 trang 93 SGK Hình học 12
Bài tập 11 trang 93 SGK Hình học 12
Bài tập 12 trang 93 SGK Hình học 12
Bài tập 1 trang 94 SGK Hình học 12
Bài tập 2 trang 94 SGK Hình học 12
Bài tập 3 trang 94 SGK Hình học 12
Bài tập 4 trang 94 SGK Hình học 12
Bài tập 5 trang 95 SGK Hình học 12
Bài tập 6 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 8 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC