Giải bài 11 tr 93 sách GK Toán Hình lớp 12
Viết phương trình đường thẳng \(\Delta\) vuông góc với mặt phẳng toạ độ (Oxz) và cắt hai đường thẳng: \(d:\left\{\begin{matrix} x=t\\ y=-4+t\\ z=3-t \end{matrix}\right.; d':\left\{\begin{matrix} x=1-2t\\ y=-3+t\\ z=4-5t \end{matrix}\right.\)
Hướng dẫn giải chi tiết bài 11
Phương pháp:
- \(\Delta\) vuông góc với mặt phẳng toạ độ (Oxz) nên sẽ nhận VTPT của mặt phẳng (Oxz) làm VTCP. Như vậy ta chỉ cần tìm một điểm thuộc \(\Delta\) thì ta sẽ viết được phương trình.
- Giả sử M và M' và giao điểm của \(\Delta\) với d và d' thì \(\overrightarrow {MM'}\) sẽ cùng phương với VTCP của \(\Delta\).
Lời giải:
Ta có lời giải chi tiết bài 11 như sau:
\(\Delta\) vuông góc với mặt phẳng tạo độ (Oxz) nên \(\Delta\) có vecto chỉ phương là \(\vec{j}=(0;1;0)\)
Gọi M(t;-4+t; 3 -t) và M'(1-2t'; -3+t'; 4 - 5t') lần lượt là giao điểm của \(\Delta\) của d và d' (h.34) ta có: \(\overrightarrow{MM'}=k.\vec{j}\)
Suy ra: \(\left\{\begin{matrix} 1-2t'-t=0 \ \ (1)\\ 1+t'-t=k \ \ (2)\\ 1-5t'+t=0 \ \ (3) \end{matrix}\right.\)
Từ (1) và (3) suy ra: \(\left\{\begin{matrix} t=\frac{3}{7}\\ \\ t'=\frac{2}{7} \end{matrix}\right.\)
Thay \(t=\frac{3}{7}\) vào toạ độ M ta được \(M(\frac{3}{7}; -\frac{25}{7};\frac{18}{7})\)
Vậy phương trình tham số của đường thẳng \(\Delta\) là: \(\left\{\begin{matrix} x=\frac{3}{7}\\ \\ y=-\frac{25}{7}+t\\ \\ z=\frac{18}{7} \end{matrix}\right.\)
-- Mod Toán 12 HỌC247
-
Lập phương trình tham số của đường thẳng d đi qua hai điểm phân biệt M0(x0 ;y0; z0) và M1(x1, y1, z1)
bởi Hoa Lan 25/05/2021
Lập phương trình tham số của đường thẳng d đi qua hai điểm phân biệt M0(x0 ;y0; z0) và M1(x1, y1, z1)
Theo dõi (0) 1 Trả lời -
Lập phương trình mặt phẳng (P) đi qua điểm \(M(1; -3; 2)\) và vuông góc với hai mặt phẳng \((Q): 2x – y +3z + 1 = 0 \) và \((R): x – 2y – z + 8 = 0\)
bởi Tieu Giao 25/05/2021
Lập phương trình mặt phẳng (P) đi qua điểm \(M(1; -3; 2)\) và vuông góc với hai mặt phẳng \((Q): 2x – y +3z + 1 = 0 \) và \((R): x – 2y – z + 8 = 0\)
Theo dõi (0) 1 Trả lời -
Cho hai đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = - 2t}\\{z = 7 + t}\end{array}} \right.\) và d1: \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t'}\\{y = - 2}\\{z = - 11 - t'}\end{array}} \right.\). Hãy lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.
bởi Hoang Viet 24/05/2021
Cho hai đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = - 2t}\\{z = 7 + t}\end{array}} \right.\) và d1: \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t'}\\{y = - 2}\\{z = - 11 - t'}\end{array}} \right.\). Hãy lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.
Theo dõi (0) 1 Trả lời -
Cho biết hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0. Hãy lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.
bởi Sasu ka 25/05/2021
Cho biết hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0. Hãy lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.
Theo dõi (0) 1 Trả lời -
Hãy lập phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng (P1): 2x + y + 2z +1 = 0 và (P2): 2x + y + 2z +5 = 0.
bởi Nguyen Ngoc 25/05/2021
Hãy lập phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng (P1): 2x + y + 2z +1 = 0 và (P2): 2x + y + 2z +5 = 0.
Theo dõi (0) 1 Trả lời -
Hãy lập phương trình mặt phẳng (P) chứa đường thẳng d: \(\left\{ {\matrix{{x = - 2 - t} \cr {y = 1 + 4t} \cr {z = 1 - t} \cr} } \right.\) và song song với d1: \({{x - 1} \over 1} = {{y - 1} \over 4} = {{z - 1} \over { - 3}}\)
bởi Phong Vu 24/05/2021
Hãy lập phương trình mặt phẳng (P) chứa đường thẳng d: \(\left\{ {\matrix{{x = - 2 - t} \cr {y = 1 + 4t} \cr {z = 1 - t} \cr} } \right.\) và song song với d1: \({{x - 1} \over 1} = {{y - 1} \over 4} = {{z - 1} \over { - 3}}\)
Theo dõi (0) 1 Trả lời -
Hãy lập phương trình mặt phẳng (P) đi qua điểm I(-1; -1; 1) và chứa đường thẳng d: \(\dfrac{{x + 2}}{{ - 1}} = \dfrac{{y - 1}}{4} = \dfrac{{z - 1}}{{ - 1}}\).
bởi Dang Tung 25/05/2021
Hãy lập phương trình mặt phẳng (P) đi qua điểm I(-1; -1; 1) và chứa đường thẳng d: \(\dfrac{{x + 2}}{{ - 1}} = \dfrac{{y - 1}}{4} = \dfrac{{z - 1}}{{ - 1}}\).
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 9 trang 93 SGK Hình học 12
Bài tập 10 trang 93 SGK Hình học 12
Bài tập 12 trang 93 SGK Hình học 12
Bài tập 1 trang 94 SGK Hình học 12
Bài tập 2 trang 94 SGK Hình học 12
Bài tập 3 trang 94 SGK Hình học 12
Bài tập 4 trang 94 SGK Hình học 12
Bài tập 5 trang 95 SGK Hình học 12
Bài tập 6 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 8 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC