Giải bài 6 tr 95 sách GK Toán Hình lớp 12
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;0;0); B(0;1;0); C(0;0;1); D(1;1;1).
Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là:
(A) \(\frac{\sqrt{3}}{2}\)
(B) \(\sqrt{2}\)
(C) \(\sqrt{3}\)
(D) \(\frac{3}{4}\)
Gợi ý trả lời bài 6
Mặt cầu đi qua 4 điểm A, B, C, D có dạng (S): \(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Vì A, B, C, D \(\in\) (S) nên \(\left\{\begin{matrix} 1-2a+d=0\\ 1-2b+d=0\\ 1-2c+d=0\\ 3+2(a+b+c)+d=0 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ \\ b=\frac{1}{2}\\ \\ c=\frac{1}{2}\\ \\ d=0 \end{matrix}\right.\)
Bán kính mặt cầu (S) là \(R=\sqrt{a^2+b^2+c^2-d}=\frac{\sqrt{3}}{2}\)
⇒ Chọn đáp án A.
-- Mod Toán 12 HỌC247
-
Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a = \left( {3; - 2;4} \right),\)\(\mathop b\limits^ \to = \left( {5;1;6} \right)\), \(\mathop c\limits^ \to = \left( { - 3;0;2} \right)\). Tìm vectơ \(\overrightarrow x \) sao cho vectơ \(\overrightarrow x \) đồng thời vuông góc với \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
bởi hà trang 07/05/2021
A. \(\left( {1;0;0} \right).\)
B. \(\left( {0;0;1} \right).\)
C. \(\left( {0;1;0} \right).\)
D. \(\left( {0;0;0} \right).\)
Theo dõi (0) 1 Trả lời -
Không gian \({\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 6} \right)^2} = 18.\), cho mặt phẳng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 9.\): \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 6} \right)^2} = 16.\) và đường thẳng \(d\):\(N( - 5;7;0)\). Với giá trị nào của \(\vec u = (2; - 2;1)\)thì \(\overrightarrow {MN} = ( - 9;6; - 6)\)cắt \(H\)
bởi Nguyễn Thị Trang 07/05/2021
A.\(\left( S \right)\).
B.\(\left( S \right)\).
C.\({R^2} = M{H^2} + {\left( {\frac{{AB}}{2}} \right)^2} = 18\) .
D.\(d(M,d) = 3\).
Theo dõi (0) 1 Trả lời -
Trong không gian \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 289.\), tọa độ giao điểm M của đường thẳng \(Oxyz\) và mặt phẳng \(d:\dfrac{{x + 5}}{2} = \dfrac{{y - 7}}{{ - 2}} = \dfrac{z}{1}\) là đáp án?
bởi Van Dung 07/05/2021
A.\(\left( S \right)\).
B.\(M(4;1;6)\).
C.\(AB = 6\) .
D.\(\left( S \right)\) .
Theo dõi (0) 1 Trả lời -
Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 9\) có tâm là đáp án nào dưới đây?
bởi Nguyễn Minh Minh 07/05/2021
A. \(I\left( {1; - 2;0} \right).\)
B. \(I\left( { - 1;2;0} \right).\)
C. \(I\left( {1;2;0} \right).\)
D. \(I\left( { - 1; - 2;0} \right).\)
Theo dõi (0) 1 Trả lời -
Các phương trình sau: \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1;\) \({x^2} + {\left( {2y - 1} \right)^2} + {z^2} = 4;\) \({x^2} + {y^2} + {z^2} + 1 = 0;\) \({\left( {2x + 1} \right)^2} + {\left( {2y - 1} \right)^2} + 4{z^2} = 16.\) Số phương trình là phương trình mặt cầu là:
bởi Lê Trung Phuong 06/05/2021
A. 4.
B. 3.
C. 2.
D. 1.
Theo dõi (0) 1 Trả lời -
Chọn phương trình không phải là phương trình mặt cầu
bởi thu trang 07/05/2021
A. \({\left( {x - 1} \right)^2} + {\left( {2y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)
C. \({\left( {2x - 1} \right)^2} + {\left( {2y - 1} \right)^2} + {\left( {2z + 1} \right)^2} = 6.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 3 - 6x.\)
Theo dõi (0) 1 Trả lời -
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 4 trang 94 SGK Hình học 12
Bài tập 5 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 8 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC