Giải bài 8 tr 95 sách GK Toán Hình lớp 12
Cho ba điểm A(0; 2; 1), B(3; 0; 1), C(1; 0; 0). Phương trình mặt phẳng (ABC) là:
(A) 2x – 3y – 4z + 2 = 0
(B) 2x + 3y – 4z – 2 = 0
(C) 4x + 6y – 8z + 2 = 0
(D) 2x – 3y – 4z + 1 = 0
Hướng dẫn giải chi tiết bài 8
\(\overrightarrow{AB}=(3;-2;0); \overrightarrow{AC}=(1;-2;-1)\)
Vecto pháp tuyến của mp(ABC) là \(\vec{n}=\left [\overrightarrow{AB};\overrightarrow{AC} \right ]=(2;3;-4)\)
Phương trình mp(ABC) là:
\(2(x-0)+3(y-2)-4(z-1)=0\Leftrightarrow 2x+2y-4z-2=0\)
⇒ Chọn đáp án B.
-- Mod Toán 12 HỌC247
-
Cho biết công thức tính khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) đi qua điểm \(M'\) và có VTCP \(\overrightarrow {u'} \) là:
bởi Nguyễn Tiểu Ly 07/05/2021
A. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
B. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\overrightarrow {u'} }}\)
C. \(d\left( {A,d'} \right) = \frac{{\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]}}{{\overrightarrow {u'} }}\)
D. \(d\left( {A,d'} \right) = \frac{{\left| {\overrightarrow {AM'} .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
Theo dõi (0) 1 Trả lời -
Xét hệ phương trình giao điểm hai đường thẳng, nếu hệ vô nghiệm và hai véc tơ \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương thì hai đường thẳng:
bởi Nhi Nhi 07/05/2021
A. cắt nhau
B. song song
C. chéo nhau
D. trùng nhau
Theo dõi (0) 1 Trả lời -
Chọn đáp án đúng. Khi xét hệ phương trình giao hai đường thẳng, nếu hệ có nghiệm duy nhất thì:
bởi minh thuận 06/05/2021
A. \(d//d'\)
B. \(d \bot d'\)
C. \(d \equiv d'\)
D. \(d\) cắt \(d'\)
Theo dõi (0) 1 Trả lời -
Ta có \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\) thì:
bởi Ho Ngoc Ha 06/05/2021
A. \(d//d'\)
B. \(d \equiv d'\)
C. \(d\) cắt \(d'\)
D. \(d\) chéo \(d'\)
Theo dõi (0) 1 Trả lời -
A. \(\left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
Theo dõi (0) 1 Trả lời -
Chọn phương án đúng. Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \) thì:
bởi Khánh An 07/05/2021
A. \(d//d'\)
B. \(d \equiv d'\)
C. \(d\) cắt \(d'\)
D. A hoặc B đúng
Theo dõi (0) 1 Trả lời -
Chọn câu đúng. Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:
bởi truc lam 07/05/2021
A. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 6 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC