Giải bài 10 tr 93 sách GK Toán Hình lớp 12
Cho điểm M(2; 1; 0) và mặt phẳng \((\alpha )\): x + 3y – z – 27 = 0. Tìm tọa độ điểm M' đối xứng với M qua \((\alpha )\).
Hướng dẫn giải chi tiết bài 10
Phương pháp:
Để tìm tọa độ H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\small (\alpha )\), ta thực hiện các bước sau:
+ Viết phương trình đường thẳng \(\Delta\) đi qua H và vuông góc với \(\small (\alpha )\).
+ Tìm tọa độ giao điểm của \(\Delta\) và \(\small (\alpha )\) chính là tọa độ điểm H cần tìm.
Điểm M' đối xứng với M qua \(\small (\alpha )\), suy ra H chính là trung điểm của MM'.
Lời giải:
Lời giải chi tiết bài 10 như sau:
Gọi H là hình chiếu của M lên mp\((\alpha )\).
Gọi d là đường thẳng đi qua M và vuông góc với \((\alpha )\), d có vecto chỉ phương là \(\vec{a_d}=\vec{n_\alpha }=(1;3;-1)\)
Phương trình tham số của d là: \(\left\{\begin{matrix} x=2+t\\ y=1+3t\\ z=-t \end{matrix}\right.\)
Thay x = 2 + t, y = 1+ 3t, z = -t vào phương trình mp \((\alpha )\), ta được:
\((2+t)+3(1+3t)-(-t)-27=0\Leftrightarrow 11t-22=0\Leftrightarrow t=2\)
Khi đó x = 4; y = 7; z = -2.
Vậy H(4; 7; -2)
Vì M' đối xứng với M qua \((\alpha )\) nên:
\(\overrightarrow{MM'}=2\overrightarrow{MH}\Leftrightarrow \left\{\begin{matrix} x_M-2=2(4-2)\\ y_M-1=2(7-1)\\ z_M=2(-2) \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_M=6\\ y_M=13\\ z_M=-4 \end{matrix}\right.\)
Vậy điểm đối xứng của điểm M qua mặt phẳng \((\alpha )\) là M'(6; 13; -4).
-- Mod Toán 12 HỌC247
-
Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C\left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\). hãy viết phương trình tổng quát của mặt phẳng \((\alpha )\) đi qua O và vuông góc với OC.
bởi Bánh Mì 25/05/2021
Trong không gian Oxyz, cho ba điểm A(1; 0; 0), B(1; 1; 1), \(C\left( {\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}} \right)\). Hãy viết phương trình tổng quát của mặt phẳng \((\alpha )\) đi qua O và vuông góc với OC.
Theo dõi (0) 1 Trả lời -
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD, A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.
bởi Quynh Nhu 24/05/2021
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD, A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho \(\overrightarrow {AC} = (0;6;0)\). Xác định khoảng cách từ trung điểm I của BC đến đường thẳng OA.
bởi Nguyễn Lê Tín 25/05/2021
Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho \(\overrightarrow {AC} = (0;6;0)\). Xác định khoảng cách từ trung điểm I của BC đến đường thẳng OA.
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = - 3 + 2t}\\{y = 1 - t}\\{z = - 1 + 4t}\end{array}} \right.\) Hãy viết phương trình đường thẳng \(\Delta \) đi qua A, cắt và vuông góc với đường thẳng d.
bởi Lê Bảo An 25/05/2021
Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = - 3 + 2t}\\{y = 1 - t}\\{z = - 1 + 4t}\end{array}} \right.\) Hãy viết phương trình đường thẳng \(\Delta \) đi qua A, cắt và vuông góc với đường thẳng d.
Theo dõi (0) 1 Trả lời -
Với mặt phẳng (P) : x + 2y – 2z + 3 = 0 và đường thẳng d: \(\left\{ {\matrix{{x = 1 + t} \cr {y = 1 + t} \cr {z = 9} \cr} } \right.\) Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).
bởi Lê Bảo An 24/05/2021
Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0 và đường thẳng d: \(\left\{ {\matrix{{x = 1 + t} \cr {y = 1 + t} \cr {z = 9} \cr} } \right.\) Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).
Theo dõi (0) 1 Trả lời -
Hãy lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau: (P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0
bởi Naru to 25/05/2021
Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau:
(P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0
Theo dõi (0) 1 Trả lời -
Hãy lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và vuông góc với mặt phẳng (P): Ax + By + Cz + D = 0.
bởi Nguyễn Tiểu Ly 24/05/2021
Hãy lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và vuông góc với mặt phẳng (P): Ax + By + Cz + D = 0.
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 8 trang 93 SGK Hình học 12
Bài tập 9 trang 93 SGK Hình học 12
Bài tập 11 trang 93 SGK Hình học 12
Bài tập 12 trang 93 SGK Hình học 12
Bài tập 1 trang 94 SGK Hình học 12
Bài tập 2 trang 94 SGK Hình học 12
Bài tập 3 trang 94 SGK Hình học 12
Bài tập 4 trang 94 SGK Hình học 12
Bài tập 5 trang 95 SGK Hình học 12
Bài tập 6 trang 95 SGK Hình học 12
Bài tập 7 trang 95 SGK Hình học 12
Bài tập 8 trang 95 SGK Hình học 12
Bài tập 9 trang 95 SGK Hình học 12
Bài tập 10 trang 95 SGK Hình học 12
Bài tập 11 trang 96 SGK Hình học 12
Bài tập 12 trang 96 SGK Hình học 12
Bài tập 13 trang 96 SGK Hình học 12
Bài tập 14 trang 97 SGK Hình học 12
Bài tập 15 trang 97 SGK Hình học 12
Bài tập 3.46 trang 131 SBT Hình học 12
Bài tập 3.47 trang 131 SBT Hình học 12
Bài tập 3.48 trang 131 SBT Hình học 12
Bài tập 3.49 trang 132 SBT Hình học 12
Bài tập 3.50 trang 132 SBT Hình học 12
Bài tập 3.51 trang 132 SBT Hình học 12
Bài tập 3.52 trang 132 SBT Hình học 12
Bài tập 3.53 trang 132 SBT Hình học 12
Bài tập 3.54 trang 132 SBT Hình học 12
Bài tập 3.56 trang 132 SBT Hình học 12
Bài tập 3.57 trang 132 SBT Hình học 12
Bài tập 3.58 trang 132 SBT Hình học 12
Bài tập 3.59 trang 133 SBT Toán 12
Bài tập 3.60 trang 133 SBT Toán 12
Bài tập 3.61 trang 133 SBT Toán 12
Bài tập 3.62 trang 133 SBT Toán 12
Bài tập 3.63 trang 133 SBT Toán 12
Bài tập 3.64 trang 133 SBT Toán 12
Bài tập 3.65 trang 133 SBT Toán 12
Bài tập 3.66 trang 134 SBT Toán 12
Bài tập 3.67 trang 134 SBT Toán 12
Bài tập 3.68 trang 134 SBT Toán 12
Bài tập 3.69 trang 134 SBT Toán 12
Bài tập 3.70 trang 134 SBT Toán 12
Bài tập 3.71 trang 134 SBT Toán 12
Bài tập 1 trang 114 SGK Hình học 12 NC
Bài tập 2 trang 114 SGK Hình học 12 NC
Bài tập 3 trang 114 SGK Hình học 12 NC
Bài tập 4 trang 114 SGK Hình học 12 NC
Bài tập 5 trang 114 SGK Hình học 12 NC
Bài tập 6 trang 114 SGK Hình học 12 NC
Bài tập 7 trang 114 SGK Hình học 12 NC
Bài tập 8 trang 115 SGK Hình học 12 NC
Bài tập 9 trang 115 SGK Hình học 12 NC
Bài tập 10 trang 115 SGK Hình học 12 NC
Bài tập 11 trang 115 SGK Hình học 12 NC
Bài tập 12 trang 116 SGK Hình học 12 NC
Bài tập 13 trang 116 SGK Hình học 12 NC
Bài tập 14 trang 116 SGK Hình học 12 NC
Bài tập 15 trang 116 SGK Hình học 12 NC
Bài tập 16 trang 116 SGK Hình học 12 NC
Bài tập 17 trang 117 SGK Hình học 12 NC
Bài tập 18 trang 117 SGK Hình học 12 NC
Bài tập 19 trang 117 SGK Hình học 12 NC
Bài tập 20 trang 118 SGK Hình học 12 NC
Bài tập 21 trang 118 SGK Hình học 12 NC
Bài tập 22 trang 118 SGK Hình học 12 NC
Bài tập 23 trang 118 SGK Hình học 12 NC
Bài tập 24 trang 118 SGK Hình học 12 NC
Bài tập 25 trang 119 SGK Hình học 12 NC
Bài tập 26 trang 119 SGK Hình học 12 NC
Bài tập 27 trang 119 SGK Hình học 12 NC
Bài tập 28 trang 120 SGK Hình học 12 NC
Bài tập 29 trang 120 SGK Hình học 12 NC
Bài tập 30 trang 121 SGK Hình học 12 NC
Bài tập 31 trang 121 SGK Hình học 12 NC
Bài tập 32 trang 121 SGK Hình học 12 NC
Bài tập 33 trang 121 SGK Hình học 12 NC
Bài tập 34 trang 122 SGK Hình học 12 NC
Bài tập 35 trang 122 SGK Hình học 12 NC
Bài tập 36 trang 122 SGK Hình học 12 NC
Bài tập 37 trang 123 SGK Hình học 12 NC
Bài tập 38 trang 123 SGK Hình học 12 NC
Bài tập 39 trang 123 SGK Hình học 12 NC
Bài tập 40 trang 124 SGK Hình học 12 NC