YOMEDIA
NONE

Bài tập 12 trang 101 SGK Hình học 12

Giải bài 12 tr 101 sách GK Toán Hình lớp 12

Trong không gian Oxyz cho bốn điểm A(3; -2; -2), B(3; 2; 0), C(0; 2; 1) và D(-1;1;2) 

a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.

b) Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng (BCD).

c) Tìm toạ độ tiếp điểm của (S) và mặt phẳng (BCD).

 

ATNETWORK

Hướng dẫn giải chi tiết bài 12

Phương pháp:

Câu a: Mặt phẳng (BCD) có cặp VTCP là \(\overrightarrow {BC} ;\overrightarrow {BD}\), từ đó ta suy ra được VTPT của mặt phẳng (BCD) và viết được phương trình mặt phẳng (BCD).

ABCD là tứ diện khi A không thuộc (BCD). Ta chỉ cần kiểm tra tọa độ A có thỏa phương trình mặt phẳng (BCD) vừa tìm được hay không là có thể đưa ra kết luận.

Đây là một cách kiểm tra 4 điểm có là 4 đỉnh của tứ diện hay không bên cạnh việc sử dụng tích hỗ tạp.

Câu b: Bán kính của mặt cầu S chính là khoảng cách từ A đến mặt phẳng (BCD).

Câu c: Để tìm tọa độ tiếp điểm của (S) và (BCD) ta thực hiện các bước sau:

  • Viết phương trình đường thẳng \(\Delta\) qua A vuông góc với (BCD).
  • Tìm giao điểm của \(\Delta\) và (BCD), chính là tiếp điểm cần tìm.

Lời giải:

Ta có lời giải chi tiết bài 12 như sau:

Câu a:

Ta có: \(\overrightarrow{BC}=(-3;0;1), \overrightarrow{BD}=(-4;-1;2)\)

Vecto pháp tuyến của (BCD) là: \(\vec{n}=\left [ \overrightarrow{BC},\overrightarrow{BD} \right ]=(1;2;3)\)

Phương trình mặt phẳng (BCD) là:

1(x -3) + 2(y - 2) + 3z = 0 ⇔ x + 2y + 3z -7 = 0

Thay toạ độ điểm A vào phương trình của (BCD) ta được:

\(1(3) + 2(-2) + 3(-2) - 7 = -14\neq 0\), suy ra \(A\notin (BCD)\)

Vậy ABCD là một tứ diện.

Câu b:

Mặt cầu (S) có tâm A và tiếp xúc với (BCD) có bán kính:

\(R=d(A,(BCD))=\frac{\left | -14 \right |}{\sqrt{1^2+2^2+3^2}}=\sqrt{14}\)

Vậy phương trình của mặt cầu (S) là:

\((x-3)^2+(y+2)^2+(z+2)^2=14\)

Câu c:

Gọi \(\Delta\) là đường thẳng đi qua A và vuông góc với (BCD). Phương trình tham số của \(\Delta\) là:

\(\left\{\begin{matrix} x=3+t\\ y=-2+2t\\ z=-2+3t \end{matrix}\right.\)

Thay x= 3+t, y=-2+2t, z=-2+3t vào phương trình mp(BCD) ta được:

\(3+t+2(-2+2t)+3(-2+3t)-7=0\Leftrightarrow t=1\)

Khi đó x = 4; y= 0; z = 1

Vậy I(4;0;1) là tiếp điểm của (S) với mp(BCD).

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 12 trang 101 SGK Hình học 12 HAY thì click chia sẻ 
YOMEDIA

Bài tập SGK khác

Bài tập 10 trang 100 SGK Hình học 12

Bài tập 11 trang 101 SGK Hình học 12

Bài tập 13 trang 101 SGK Hình học 12

Bài tập 14 trang 101 SGK Hình học 12

Bài tập 15 trang 101 SGK Hình học 12

Bài tập 16 trang 102 SGK Hình học 12

Bài tập 1 trang 122 SGK Hình học 12 NC

Bài tập 2 trang 122 SGK Hình học 12 NC

Bài tập 3 trang 122 SGK Hình học 12 NC

Bài tập 4 trang 122 SGK Hình học 12 NC

Bài tập 5 trang 122 SGK Hình học 12 NC

Bài tập 6 trang 123 SGK Hình học 12 NC

Bài tập 7 trang 123 SGK Hình học 12 NC

Bài tập 8 trang 123 SGK Hình học 12 NC

Bài tập 9 trang 123 SGK Hình học 12 NC

Bài tập 10 trang 123 SGK Hình học 12 NC

Bài tập 1 trang 127 SGK Hình học 12 NC

Bài tập 2 trang 127 SGK Hình học 12 NC

Bài tập 3 trang 127 SGK Hình học 12 NC

Bài tập 4 trang 128 SGK Hình học 12 NC

Bài tập 5 trang 128 SGK Hình học 12 NC

Bài tập 6 trang 128 SGK Hình học 12 NC

Bài tập 7 trang 128 SGK Hình học 12 NC

Bài tập 8 trang 129 SGK Hình học 12 NC

Bài tập 9 trang 129 SGK Hình học 12 NC

Bài tập 10 trang 129 SGK Hình học 12 NC

Bài tập 12 trang 129 SGK Hình học 12 NC

Bài tập 11 trang 129 SGK Hình học 12 NC

Bài tập 13 trang 129 SGK Hình học 12 NC

Bài tập 14 trang 130 SGK Hình học 12 NC

Bài tập 15 trang 130 SGK Hình học 12 NC

Bài tập 16 trang 130 SGK Hình học 12 NC

Bài tập 17 trang 130 SGK Hình học 12 NC

Bài tập 18 trang 130 SGK Hình học 12 NC

Bài tập 19 trang 131 SGK Hình học 12 NC

Bài tập 21 trang 131 SGK Hình học 12 NC

Bài tập 22 trang 131 SGK Hình học 12 NC

Bài tập 23 trang 132 SGK Hình học 12 NC

Bài tập 1 trang 168 SBT Hình học Toán 12

Bài tập 2 trang 168 SBT Hình học Toán 12

Bài tập 3 trang 169 SBT Hình học Toán 12

Bài tập 4 trang 169 SBT Hình học Toán 12

Bài tập 5 trang 169 SBT Hình học Toán 12

Bài tập 6 trang 169 SBT Hình học Toán 12

Bài tập 7 trang 169 SBT Hình học Toán 12

Bài tập 8 trang 169 SBT Hình học Toán 12

Bài tập 9 trang 170 SBT Hình học Toán 12

Bài tập 10 trang 170 SBT Hình học Toán 12

Bài tập 1 trang 170 SBT Hình học Toán 12

Bài tập 2 trang 170 SBT Hình học Toán 12

Bài tập 3 trang 170 SBT Hình học Toán 12

Bài tập 4 trang 171 SBT Hình học Toán 12

Bài tập 5 trang 171 SBT Hình học Toán 12

Bài tập 6 trang 171 SBT Hình học Toán 12

Bài tập 7 trang 171 SBT Hình học Toán 12

Bài tập 8 trang 171 SBT Hình học Toán 12

Bài tập 9 trang 171 SBT Hình học Toán 12

Bài tập 10 trang 172 SBT Hình học Toán 12

Bài tập 11 trang 172 SBT Hình học Toán 12

Bài tập 12 trang 172 SBT Hình học Toán 12

Bài tập 13 trang 172 SBT Hình học Toán 12

Bài tập 14 trang 172 SBT Hình học Toán 12

Bài tập 15 trang 172 SBT Hình học Toán 12

Bài tập 16 trang 173 SBT Hình học Toán 12

Bài tập 17 trang 173 SBT Hình học Toán 12

Bài tập 18 trang 173 SBT Hình học Toán 12

Bài tập 19 trang 173 SBT Hình học Toán 12

Bài tập 20 trang 173 SBT Hình học Toán 12

Bài tập 21 trang 173 SBT Hình học Toán 12

Bài tập 22 trang 174 SBT Hình học Toán 12

Bài tập 23 trang 174 SBT Hình học Toán 12

Bài tập 24 trang 174 SBT Hình học Toán 12

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON