Bài tập 12 trang 129 SGK Hình học 12 NC
Cho hình chữ nhật có hai đỉnh A(−2;3;0), B(2;3;0) và một cạnh nằm trên trục Ox. Khối tròn xoay sinh bởi hình chữ nhật đó khi quay quanh trục Oy có thể tích là:
(A) \(6{\pi ^2}\)
(B) 12
(C) \(12\pi \)
(D) \(\frac{{4\pi }}{3}.\)
Hướng dẫn giải chi tiết
Hình chữ nhật ABCD trong đó C(2; 0; 0), D(-2; 0; 0). Khối tròn xoay sinh bởi hình chữ nhật ABCD khi quay quanh trục Oy là khối trụ có bán kính đường tròn đáy là R = 2, chiều cao h = 3 nên có thể tích là \(V = \pi {R^2}h = 12\pi .\)
Chọn (C).
-- Mod Toán 12 HỌC247
-
Trong không gian Oxyz, cho hai điểm \(A\left( {3;5; - 1} \right)\) và \(B\left( {1;1;3} \right)\). Tọa độ điểm M thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) nhỏ nhất là đáp án
bởi thúy ngọc 09/06/2021
A. \(M\left( { - 2;3;0} \right).\)
B. \(M\left( {2;3;0} \right).\)
C. \(M\left( { - 2; - 3;0} \right).\)
D. \(M\left( {2; - 3;0} \right).\)
Theo dõi (0) 1 Trả lời -
Không gian Oxyz, ta cho đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 2}} = \frac{{z - 3}}{1}\) và điểm \(A\left( {1;0; - 1} \right)\). Gọi \({d_2}\) là đường thẳng đi qua A và có vecto chỉ phương \(\overrightarrow u = \left( {a;1;2} \right)\). Giá trị của a sao cho đường thẳng \({d_1}\) cắt đường thẳng \({d_2}\) là
bởi Ngoc Son 09/06/2021
A. \(a = - 1.\)
B. \(a = 2.\)
C. \(a = 0.\)
D. \(a = 1.\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\) \(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là đáp án:
bởi Phung Thuy 09/06/2021
A. \(3x + 14y + 4z - 5 = 0.\)
B. \(2x - y + 2z - 2 = 0.\)
C. \(2x - y + 2z + 2 = 0.\)
D. \(3x + 14y + 4z + 5 = 0.\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) với m là tham số; và đường thằng \(\Delta :\left\{ \begin{array}{l}x = 4 + 2t\\y = 3 + t\\z = 3 + 2t\end{array} \right.\). Biết đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) tại hai điểm phân biệt A ,B sao cho \(AB = 8\). Giá trị của m là câu?
bởi Bo Bo 09/06/2021
A. \(m = 12.\)
B. \(m = - 12.\)
C. \(m = - 10.\)
D. \(m = 5.\)
Theo dõi (0) 1 Trả lời -
Hình vuông OABC có cạnh bằng 4 được chia thành hai phần bởi đường cong \(\left( C \right)\) có phương trình \(y = \frac{1}{4}{x^2}\). Gọi \({S_1};\,\,{S_2}\) lần lượt là diện tích phần không bị gạch và phần bị gạch như hình bên dưới. Tỉ số \(\frac{{{S_1}}}{{{S_2}}}\) bằng câu?
bởi Lê Nhật Minh 09/06/2021
A. \(\frac{3}{2}.\) B. 3.
C. \(\frac{1}{2}.\) D. 2.
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz cho hình thang cân ABCD có đáy AB và CD. Biết \(A\left( {3;1; - 2} \right),\) \(B\left( { - 1;3;2} \right),\) \(C\left( { - 6;3;6} \right);\) \(D\left( {a;b;c} \right);\) \(a,b,c \in \mathbb{R}\). Giá trị \(a + b + c\) bằng đáp án?
bởi Huy Tâm 09/06/2021
A. \( - 1\). B. 1.
C. 3. D. \( - 3.\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, có cho hai vecto \(\overrightarrow m = \left( {4;3;1} \right)\) và \(\overrightarrow n = \left( {0;0;1} \right)\). Gọi \(\overrightarrow p \) là vecto cùng hướng với \(\left[ {\overrightarrow m ;\overrightarrow n } \right]\) và \(\left| {\overrightarrow p } \right| = 15\). Tìm tọa độ của \(\overrightarrow p \) là
bởi minh dương 09/06/2021
A. \(\left( { - 9;12;0} \right)\)
B. \(\left( {9; - 12;0} \right)\)
C. \(\left( {0;9; - 12} \right)\)
D. \(\left( {0; - 9;12} \right)\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, có phương trình của mặt phẳng đi qua điểm \(M\left( {2; - 3;4} \right)\) và có vecto pháp tuyến \(\overrightarrow n = \left( { - 2;4;1} \right)\) là câu?
bởi Lam Van 09/06/2021
A. \(2x - 4y - z - 12 = 0.\)
B. \(2x - 3y + 4z - 12 = 0\)
C. \(2x - 4y - z + 12 = 0\)
D. \(2x - 3y + 4z + 12 = 0\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Biết mặt cầu \(\left( S \right)\) có phương trình là
bởi Nguyễn Thị Trang 09/06/2021
A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\) có tọa độ tâm I và bán kính R lần lượt là câu nào?
bởi con cai 09/06/2021
A. \(I\left( { - 4;1;0} \right);\,\,R = 4.\)
B. \(I\left( {8; - 2;0} \right);\,\,R = 2\sqrt 7 .\)
C. \(I\left( {4; - 1;0} \right);\,\,R = 4.\)
D. \(I\left( {4; - 1;0} \right);\,\,R = 16.\)
Theo dõi (0) 1 Trả lời -
Không gian \(Oxyz\), ta cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng đáp án?
bởi Mai Vàng 09/06/2021
A. \(1\) B. \(\frac{{11}}{3}\)
C. \(3\) D. \(\frac{1}{3}\)
Theo dõi (0) 1 Trả lời -
Biết rằng thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x\), trục hoành, đường thẳng \(x = 0;\) \(x = 1\) quanh trục hoành bằng
bởi Hoàng My 09/06/2021
A. \(\frac{{2\pi }}{3}.\) B. \(\frac{{4\pi }}{3}.\)
C. \(\frac{{8\pi }}{{15}}.\) D. \(\frac{{16\pi }}{{15}}.\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 9 trang 129 SGK Hình học 12 NC
Bài tập 10 trang 129 SGK Hình học 12 NC
Bài tập 11 trang 129 SGK Hình học 12 NC
Bài tập 13 trang 129 SGK Hình học 12 NC
Bài tập 14 trang 130 SGK Hình học 12 NC
Bài tập 15 trang 130 SGK Hình học 12 NC
Bài tập 16 trang 130 SGK Hình học 12 NC
Bài tập 17 trang 130 SGK Hình học 12 NC
Bài tập 18 trang 130 SGK Hình học 12 NC
Bài tập 19 trang 131 SGK Hình học 12 NC
Bài tập 21 trang 131 SGK Hình học 12 NC
Bài tập 22 trang 131 SGK Hình học 12 NC
Bài tập 23 trang 132 SGK Hình học 12 NC
Bài tập 1 trang 168 SBT Hình học Toán 12
Bài tập 2 trang 168 SBT Hình học Toán 12
Bài tập 3 trang 169 SBT Hình học Toán 12
Bài tập 4 trang 169 SBT Hình học Toán 12
Bài tập 5 trang 169 SBT Hình học Toán 12
Bài tập 6 trang 169 SBT Hình học Toán 12
Bài tập 7 trang 169 SBT Hình học Toán 12
Bài tập 8 trang 169 SBT Hình học Toán 12
Bài tập 9 trang 170 SBT Hình học Toán 12
Bài tập 10 trang 170 SBT Hình học Toán 12
Bài tập 1 trang 170 SBT Hình học Toán 12
Bài tập 2 trang 170 SBT Hình học Toán 12
Bài tập 3 trang 170 SBT Hình học Toán 12
Bài tập 4 trang 171 SBT Hình học Toán 12
Bài tập 5 trang 171 SBT Hình học Toán 12
Bài tập 6 trang 171 SBT Hình học Toán 12
Bài tập 7 trang 171 SBT Hình học Toán 12
Bài tập 8 trang 171 SBT Hình học Toán 12
Bài tập 9 trang 171 SBT Hình học Toán 12
Bài tập 10 trang 172 SBT Hình học Toán 12
Bài tập 11 trang 172 SBT Hình học Toán 12
Bài tập 12 trang 172 SBT Hình học Toán 12
Bài tập 13 trang 172 SBT Hình học Toán 12
Bài tập 14 trang 172 SBT Hình học Toán 12
Bài tập 15 trang 172 SBT Hình học Toán 12
Bài tập 16 trang 173 SBT Hình học Toán 12
Bài tập 17 trang 173 SBT Hình học Toán 12
Bài tập 18 trang 173 SBT Hình học Toán 12
Bài tập 19 trang 173 SBT Hình học Toán 12
Bài tập 20 trang 173 SBT Hình học Toán 12
Bài tập 21 trang 173 SBT Hình học Toán 12
Bài tập 22 trang 174 SBT Hình học Toán 12