Bài tập 17 trang 130 SGK Hình học 12 NC
Cho hai đường thẳng
\(d:\left\{ {\begin{array}{*{20}{c}}
{x = 1 + t}\\
{y = 2 + t}\\
{z = 3 - t}
\end{array}} \right.\) và \(d':\left\{ \begin{array}{l}
x = 1 + 2t'\\
y = - 1 + 2t'\\
z = 2 - 2t'
\end{array} \right.\)
Khi đó:
(A) d cắt d’
(B) d trùng d’
(C) d và d’ chéo nhau
(D) d song song với d’
Hướng dẫn giải chi tiết
d đi qua A(1; 2; 3) có VTCP \(\vec u = \left( {1;1; - 1} \right)\)
d’ đi qua B(1; -1; 2) có VTCP \(\overrightarrow {u'} = \left( {2;2; - 2} \right).\)
Ta có: \(\overrightarrow {AB} = \left( {0; - 3; - 1} \right)\) không cùng phương với \(\vec u'\).
\(\vec u\), \(\vec u'\) cùng phương nên d // d’.
Chọn (D).
-- Mod Toán 12 HỌC247
-
Trong không gian Oxyz, hãy tìm tọa độ tâm I và bán kính R của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 2z - 3 = 0\)
bởi Hoang Viet 08/06/2021
A. \(I\left( {2; - 1; - 1} \right);R = 9\)
B. \(I\left( { - 2;1;1} \right);R = 9\)
C. \(I\left( { - 2;1;1} \right);R = 3\)
D. \(I\left( {2; - 1; - 1} \right);R = 3\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right)\) có phương trình \(2x - 6y - 4z + 7 = 0\) và ba điểm \(A\left( {2;4; - 1} \right);\) \(B\left( {1;4; - 1} \right);\) \(C\left( {2;4;3} \right)\). S là điểm nằm trên mặt phẳng \(\left( P \right)\) sao cho \(SA = SB = SC\). Tính \(l = SA + SB\).
bởi Ngoc Son 09/06/2021
A. \(l = \sqrt {53} \)
B. \(l = \sqrt {37} \)
C. \(l = \sqrt {117} \)
D. \(l = \sqrt {101} \)
Theo dõi (0) 1 Trả lời -
Cho phương trình \({x^2} - 4x + \frac{c}{d} = 0\) (với phân số \(\frac{c}{d}\) tối giản) có hai nghiệm phức. Ta gọi A; B là hai điểm biểu diễn của hai nghiệm đó trên mặt phẳng Oxy. Biết tam giác OAB đều (O là gốc tọa độ). Tính \(P = c + 2d.\)
bởi thu thủy 09/06/2021
A. \(P = - 14\) B. \(P = 22\)
C. \(P = 18\) D. \(P = - 10\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho hai đường thẳng \(\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\) và \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\). M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.
bởi Huong Giang 09/06/2021
A. \(OM = \sqrt {35} \)
B. \(OM = 2\sqrt {35} \)
C. \(OM = \frac{{\sqrt {14} }}{2}\)
D. \(OM = \sqrt 5 \)
Theo dõi (0) 1 Trả lời -
Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau đây \(y = \sqrt x \cos \frac{x}{2},\,\,y = 0,\,\,x = \frac{\pi }{2},\,\,x = \pi \). Tính thể tích \(V\) của khối tròn xoay sinh ra khi cho hình phẳng \(\left( H \right)\) quay xung quanh trục Ox.
bởi hà trang 08/06/2021
A. \(V = \frac{\pi }{6}\left( {3{\pi ^2} + 4\pi - 8} \right)\)
B. \(V = \frac{\pi }{{16}}\left( {3{\pi ^2} - 4\pi - 8} \right)\)
C. \(V = \frac{\pi }{8}\left( {3{\pi ^2} + 4\pi - 8} \right)\)
D. \(V = \frac{1}{{16}}\left( {3{\pi ^2} - 4\pi - 8} \right)\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, hãy tính diện tích S của tam giác ABC, biết \(A\left( {2;0;0} \right),\) \(B\left( {0;3;0} \right)\) và \(C\left( {0;0;4} \right)\)
bởi Nguyen Nhan 09/06/2021
A. \(S = 2\sqrt {61} \)
B. \(S = \frac{{\sqrt {61} }}{2}\)
C. \(S = \frac{{\sqrt {61} }}{3}\)
D. \(S = \sqrt {61} \)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z + 1}}{{ - 1}}\). Đường thẳng đi qua điểm \(M\left( {2;1; - 1} \right)\) và song song với đường thẳng d có phương trình là đáp án:
bởi Nguyen Dat 08/06/2021
A. \(\frac{{x + 2}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}\)
B. \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}\)
C. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)
D. \(\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 1}}{{ - 1}}\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, hãy viết phương trình đường thẳng \(\Delta \) đi qua hai điểm \(A\left( {1;4;4} \right)\) và \(B\left( { - 1;0;2} \right).\)
bởi Nguyễn Thanh Hà 09/06/2021
A. \(\frac{x}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}\)
B. \(\frac{{x + 1}}{2} = \frac{y}{4} = \frac{{z + 2}}{{ - 2}}\)
C. \(\frac{{x + 1}}{{ - 2}} = \frac{y}{{ - 4}} = \frac{{z + 2}}{{ - 2}}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 4}}{2} = \frac{{z - 4}}{2}\)
Theo dõi (0) 1 Trả lời -
Diện tích S của hình phẳng giới hạn bởi các đường \(y = {e^{2x}},\) \(y = 0,\) \(x = 0,\) \(x = 2\) được biểu diễn bởi \(\frac{{{e^a} - b}}{c}\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Hãy tính \(P = a + 3b - c.\).
bởi Hương Lan 08/06/2021
A. \(P = 5.\) B. \(P = - 1\)
C. \(P = 6\) D. \(P = 3\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho ba điểm \(A\left( {0;0;1} \right),\) \(B\left( {0;2;0} \right),\) \(C\left( {3;0;0} \right)\). Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính \(k = x + 2y + z.\) ta được:
bởi Van Tho 09/06/2021
A. \(k = \frac{{66}}{{49}}\) B. \(k = \frac{{36}}{{29}}\)
C. \(k = \frac{{74}}{{49}}\) D. \(k = \frac{{12}}{7}\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, cho bốn điểm \(A\left( {0;1; - 1} \right),\) \(B\left( {1;1;2} \right),\) \(C\left( {1; - 1;0} \right)\) và \(D\left( {0;0;1} \right)\). Mặt phẳng \(\left( \alpha \right)\) song song với mặt phẳng \(\left( {BCD} \right)\) và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng \(\frac{1}{{27}}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) ta được:
bởi Mai Đào 09/06/2021
A. \( - y + z - 4 = 0\)
B. \(y - z - 1 = 0\)
C. \(y + z - 4 = 0\)
D. \(3x - 3z - 4 = 0\)
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz, ta biết \(\overrightarrow n = \left( {a;b;c} \right)\) là vecto pháp tuyến của mặt phẳng qua \(A\left( {2;1;5} \right)\) và chứa trục Ox. Tính \(k = \frac{b}{c}.\)
bởi Mai Trang 09/06/2021
A. \(k = - 5.\) B. \(k = \frac{1}{5}\)
C. \(k = 5.\) D. \(k = - \frac{1}{5}\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 15 trang 130 SGK Hình học 12 NC
Bài tập 16 trang 130 SGK Hình học 12 NC
Bài tập 18 trang 130 SGK Hình học 12 NC
Bài tập 19 trang 131 SGK Hình học 12 NC
Bài tập 21 trang 131 SGK Hình học 12 NC
Bài tập 22 trang 131 SGK Hình học 12 NC
Bài tập 23 trang 132 SGK Hình học 12 NC
Bài tập 1 trang 168 SBT Hình học Toán 12
Bài tập 2 trang 168 SBT Hình học Toán 12
Bài tập 3 trang 169 SBT Hình học Toán 12
Bài tập 4 trang 169 SBT Hình học Toán 12
Bài tập 5 trang 169 SBT Hình học Toán 12
Bài tập 6 trang 169 SBT Hình học Toán 12
Bài tập 7 trang 169 SBT Hình học Toán 12
Bài tập 8 trang 169 SBT Hình học Toán 12
Bài tập 9 trang 170 SBT Hình học Toán 12
Bài tập 10 trang 170 SBT Hình học Toán 12
Bài tập 1 trang 170 SBT Hình học Toán 12
Bài tập 2 trang 170 SBT Hình học Toán 12
Bài tập 3 trang 170 SBT Hình học Toán 12
Bài tập 4 trang 171 SBT Hình học Toán 12
Bài tập 5 trang 171 SBT Hình học Toán 12
Bài tập 6 trang 171 SBT Hình học Toán 12
Bài tập 7 trang 171 SBT Hình học Toán 12
Bài tập 8 trang 171 SBT Hình học Toán 12
Bài tập 9 trang 171 SBT Hình học Toán 12
Bài tập 10 trang 172 SBT Hình học Toán 12
Bài tập 11 trang 172 SBT Hình học Toán 12
Bài tập 12 trang 172 SBT Hình học Toán 12
Bài tập 13 trang 172 SBT Hình học Toán 12
Bài tập 14 trang 172 SBT Hình học Toán 12
Bài tập 15 trang 172 SBT Hình học Toán 12
Bài tập 16 trang 173 SBT Hình học Toán 12
Bài tập 17 trang 173 SBT Hình học Toán 12
Bài tập 18 trang 173 SBT Hình học Toán 12
Bài tập 19 trang 173 SBT Hình học Toán 12
Bài tập 20 trang 173 SBT Hình học Toán 12
Bài tập 21 trang 173 SBT Hình học Toán 12
Bài tập 22 trang 174 SBT Hình học Toán 12