YOMEDIA
NONE

Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{z - 6}}{{ - 2}}\) và \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\). Cho biết phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đường thẳng \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{x - 6}}{{ - 2}}\) đi qua \(M\left( {2; - 2;6} \right)\) và có VTCP \(\overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\)

    Đường thẳng \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) có VTCP \(\overrightarrow {{u_2}}  = \left( {1; - 2;3} \right)\)

    Vì mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) nên 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( { - 1; - 8; - 5} \right)\)

    Phương trình mặt phẳng \(\left( P \right): - 1\left( {x - 2} \right) - 8\left( {y + 2} \right) - 5\left( {z - 6} \right) = 0\) \( \Leftrightarrow x + 8y + 5 - 16 = 0\)

      bởi Lê Minh Hải 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON