YOMEDIA
NONE

Cho biết hai mặt phẳng: (P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0. Hãy lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.

Cho biết hai mặt phẳng: (P1): 2x + y + 2z  +1 = 0  và  (P2): 4x – 2y – 4z + 7 = 0. Hãy lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(M(x,y,z) \in (P)\)\( \Leftrightarrow d(M,({P_1})) = d(M,({P_2}))\)

    \( \Leftrightarrow \dfrac{{|2x + y + 2z + 1|}}{{\sqrt {4 + 1 + 4} }}\)\( = \dfrac{{|4x - 2y - 4z + 7|}}{{\sqrt {16 + 4 + 16} }}\)

    \( \Leftrightarrow \dfrac{{\left| {2x + y + 2z + 1} \right|}}{3} = \dfrac{{\left| {4x - 2y - 4z + 7} \right|}}{6}\)

    \( \Leftrightarrow 2|2x + y + 2z + 1|\)\( = |4x - 2y - 4z + 7|\)

    \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x + 2y + 4z + 2 = 4x - 2y - 4z + 7}\\{4x + 2y + 4z + 2 =  - (4x - 2y - 4z + 7)}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4y + 8z - 5 = 0}\\{8x + 9 = 0}\end{array}} \right.\)

    Từ đó suy ra phương trình mặt phẳng phải tìm là:  4y + 8z – 5 = 0  hoặc 8x + 9 = 0.

      bởi Nguyễn Anh Hưng 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON