YOMEDIA
  • Câu hỏi:

    Giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\) trên khoảng \((1; + \infty )\) là:

    • A. \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y = 3.\)
    • B. \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y =  - 1.\)
    • C. \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y = 5.\)
    • D. \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y =  - \frac{7}{3}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    \(\begin{array}{l}y = \frac{{{x^2} - x + 1}}{{x - 1}} \Rightarrow y' = 1 - \frac{1}{{{{(x - 1)}^2}}}\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

    Lập bảng biến thiên ta thấy hàm số đạt giá trị nhỏ nhất tại x=3, giá trị nhỏ nhất \(f(2) = 3.\)

    RANDOM

Mã câu hỏi: 17670

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

 

YOMEDIA