Giải bài 1.64 tr 37 SBT Toán 12
Cho hàm số \(y = 2{x^4} - 4{x^2}\)(1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
b) Với giá trị nào của m, phương trình \({x^2}|{x^2} - 2| = m\) có đúng 6 nghiệm thực phân biệt?
Hướng dẫn giải chi tiết
a)
Tập xác định : \(D = R\)
\(y' = 8{x^3} - 8x = 8x({x^2} - 1)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 0\\x = 1\end{array} \right.\)
Hàm số đồng biến trên mỗi khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\)
Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\)
Hàm số đạt cực đại tại \(x = 0;{y_{CD}} = 0\)
Hàm số đạt cực tiểu tại \(x = \pm 1;{y_{CT}} = - 2\)
Giới hạn: \(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \)
\(y'' = 24{x^2} - 8;\)\(y'' = 0 \Leftrightarrow {x^2} = \dfrac{1}{3} \Leftrightarrow x = \pm \dfrac{{\sqrt 3 }}{3}\)
Đồ thị có hai điểm uốn: \({I_1}\left( { - \dfrac{{\sqrt 3 }}{3}; - \dfrac{{10}}{9}} \right);\)\({I_2}\left( {\dfrac{{\sqrt 3 }}{3}; - \dfrac{{10}}{9}} \right)\).
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại: \(A\left( { - \sqrt 2 ;0} \right),O\left( {0;0} \right),B\left( {\sqrt 2 ;0} \right)\)
b)
Ta có: \({x^2}|{x^2} - 2| = m\)\( \Leftrightarrow 2{x^2}\left| {{x^2} - 2} \right| = 2m\)\( \Leftrightarrow \left| {2{x^2}\left( {{x^2} - 2} \right)} \right| = 2m\)\( \Leftrightarrow \left| {2{x^4} - 4{x^2}} \right| = 2m\)
Từ đồ thị hàm số \(y = 2{x^4}-4{x^2}\) có thể suy ra đồ thị của hàm số \(y = \left| {2{x^4} - 4{x^2}} \right|\) như sau:
Phương trình : \(\left| {2{x^4} - 4{x^2}} \right| = 2m\) có \(6\) nghiệm phân biệt khi và chỉ khi đường thẳng \(y = 2m\) giao với đồ thị trên tại \(6\) điểm phân biệt \( \Leftrightarrow 0 < 2m < 2\) \( \Leftrightarrow 0 < m < 1\).
Vậy \(0 < m < 1\).
-- Mod Toán 12 HỌC247
-
Số nghiêm thuộc đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) của pt f(|sinx|) = 2 là?
bởi Chế Thị Mến 26/06/2020
Câu 46\
Theo dõi (0) 0 Trả lời -
Cho hàm số y = f(x) liên tục trên R có bảng biến thiên biết f(0) <0.Hỏi pt \( f|x| =f(0)\) có bao nhiêu nghiệm?
bởi Quang Long 14/06/2020
Câu 45
Theo dõi (0) 7 Trả lời -
Có bao nhiêu phát biểu đúng?
bởi Khỏa Nhi 12/06/2020
Giúp mình câu này với ạ ❤❤❤
Câu 43. Tìm phát biểu đúng?
Theo dõi (0) 2 Trả lời -
Các bước giải bài toán viết PT đường thẳng cắt đồ thị hàm số bậc ba tại ba điểm?
bởi Hà Minh Sự 11/06/2020
Các bước giải bài toán viết PT đường thẳng cắt đồ thị hàm số bậc ba tại ba điểm?
Theo dõi (0) 4 Trả lời -
Điều kiện đủ để hàm số đơn điệu là gì?
bởi Nguyễn Sơn Ca 31/05/2020
Theo dõi (0) 2 Trả lời -
Điều kiện cần để hàm số đơn điệu là gì?
bởi Trịnh Lan Trinh 30/05/2020
Theo dõi (0) 1 Trả lời -
Cho hàm số \(y = f\left( x \right).\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
bởi Trần Hoàng Mai 30/05/2020
Hàm số \(g\left( x \right) = f\left( {1 - 2x} \right)\) đồng biến trên khoảng nào trong các khoảng sau ?
A. \(\left( { - 1;0} \right).\)
B.\(\left( { - \infty ;0} \right).\)
C. \(\left( {0;1} \right).\)
D. \(\left( {1; + \infty } \right).\)
Theo dõi (0) 4 Trả lời
Bài tập SGK khác
Bài tập 1.62 trang 37 SBT Toán 12
Bài tập 1.63 trang 37 SBT Toán 12
Bài tập 1.65 trang 37 SBT Toán 12
Bài tập 1.66 trang 38 SBT Toán 12
Bài tập 1.67 trang 38 SBT Toán 12
Bài tập 1.68 trang 38 SBT Toán 12
Bài tập 1.69 trang 38 SBT Toán 12
Bài tập 1.70 trang 38 SBT Toán 12
Bài tập 1.71 trang 39 SBT Toán 12
Bài tập 1.72 trang 39 SBT Toán 12
Bài tập 1.73 trang 39 SBT Toán 12
Bài tập 1.74 trang 39 SBT Toán 12
Bài tập 29 trang 27 SGK Toán 12 NC
Bài tập 30 trang 27 SGK Toán 12 NC
Bài tập 31 trang 27 SGK Toán 12 NC
Bài tập 32 trang 28 SGK Toán 12 NC
Bài tập 33 trang 28 SGK Toán 12 NC
Bài tập 40 trang 43 SGK Toán 12 NC
Bài tập 41 trang 44 SGK Toán 12 NC
Bài tập 42 trang 45 SGK Toán 12 NC
Bài tập 43 trang 44 SGK Toán 12 NC
Bài tập 44 trang 44 SGK Toán 12 NC
Bài tập 45 trang 44 SGK Toán 12 NC
Bài tập 46 trang 44 SGK Toán 12 NC
Bài tập 47 trang 45 SGK Toán 12 NC
Bài tập 48 trang 45 SGK Toán 12 NC
Bài tập 49 trang 49 SGK Toán 12 NC
Bài tập 50 trang 49 SGK Toán 12 NC
Bài tập 51 trang 49 SGK Toán 12 NC
Bài tập 52 trang 50 SGK Toán 12 NC
Bài tập 53 trang 50 SGK Toán 12 NC
Bài tập 54 trang 50 SGK Toán 12 NC
Bài tập 55 trang 50 SGK Toán 12 NC
Bài tập 56 trang 50 SGK Toán 12 NC
Bài tập 57 trang 55 SGK Toán 12 NC
Bài tập 58 trang 56 SGK Toán 12 NC
Bài tập 59 trang 56 SGK Toán 12 NC
Bài tập 60 trang 56 SGK Toán 12 NC
Bài tập 61 trang 56 SGK Toán 12 NC
Bài tập 62 trang 57 SGK Toán 12 NC
Bài tập 63 trang 57 SGK Toán 12 NC
Bài tập 64 trang 57 SGK Toán 12 NC