YOMEDIA
NONE

Câu hỏi 2 trang 60 SGK Toán 9 Tập 2

Câu hỏi 2 tr 60 sách GK Toán lớp 9 Tập 2

Đối với phương trình bậc hai \(ax^2 + bx + c = 0 (a ≠ 0),\) hãy viết công thức tính \(Δ, Δ'.\) 

Khi nào thì phương trình vô nghiệm?

Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm.

Khi nào phương trình có nghiệm kép? Viết công thức nghiệm.

Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt? 

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Dựa vào kiến thức về công thức nghiệm và công thức nghiệm thu gọn

Lời giải chi tiết

* Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\,\,(a \ne 0)\)

và biệt thức \(\Delta  = {b^2} - 4ac\), \(\Delta' = {b'^2} - ac\) với \(b'=\dfrac{b}{2}\) 

TH1. Nếu \(\Delta  < 0\) (hoặc \(\Delta'  < 0)\) thì phương trình vô nghiệm.

TH2. Nếu \(\Delta  = 0\) (hoặc \(\Delta'  =0)\) thì phương trình có nghiệm kép: \({x_1} = {x_2} =  - \dfrac{b}{2a}\) (hoặc \({x_1} = {x_2} =  - \dfrac{b'}{a}\) )

TH3. Nếu \(\Delta  > 0\) (hoặc \(\Delta'  >0)\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta  }}{{2a}}\) (hoặc \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt \Delta ' }}{{a}}\))

* Khi a và c trái dấu thì \(a.c<0\) nên \(\Delta  = {b^2} - 4ac>0\), do đó phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có hai nghiệm phân biệt.

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Câu hỏi 2 trang 60 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON