YOMEDIA
NONE

Bài tập 67 trang 63 SBT Toán 9 Tập 2

Giải bài 67 tr 63 sách BT Toán lớp 9 Tập 2

Cho hai hàm số: \(y = 2x - 3\) và \(y =  - {x^2}\)

a) Vẽ đồ thị hai hàm số này trong cùng một mặt phẳng tọa độ.

b) Tìm tọa độ các giao điểm của hai đồ thị.

c) Kiểm nghiệm rằng tọa độ của mỗi giao điểm đều là nghiệm chung của hai phương trình hai ẩn y = 2x – 3 và \(y =  - {x^2}\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

a) Xác định các điểm thuộc đồ thị rồi vẽ đồ thị hàm số.

b) Tìm tọa độ các giao điểm của hai đồ thị.

c) Thay tọa độ giao điểm vào mỗi phương trình để suy ra nghiệm.

Lời giải chi tiết

a) Vẽ đồ thị hàm số: \(y = 2x - 3\)

Cho x = 0 ⇒ y = -3(0; -3)

Cho y = 0 ⇒ x = 1,5(1,5; 0)

Vẽ đồ thị hàm số:  

x

-2

-1

0

1

2

\(y =  - {x^2}\)

-4

-1

0

-1

-4

b) Tọa độ giao điểm của hai đồ thị: A(1; -1) và B(-3; -9)

c) Thay tọa độ của A và B vào phương trình: \(y = 2x - 3\) ta có:

\( - 1 = 2.1 - 3; - 9 = 2.\left( { - 3} \right) - 3\)

Thay tọa độ của A và B vào phương trình: \(y =  - {x^2}\)

\( - 1 =  - {1^2} =  - 1; - 9 =  - {\left( { - 3} \right)^2} =  - 9\)

Vậy tọa độ của A và B là nghiệm của hệ phương trình: 

\(\left\{ {\matrix{
{y = 2x - 3} \cr 
{y = - {x^2}} \cr} } \right.\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 67 trang 63 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON