• Câu hỏi:

    Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = x + \frac{4}{x}\) trên đoạn [1;3] bằng

    • A. \(\frac{{65}}{3}\)
    • B. 20
    • C. 6
    • D. \(\frac{{52}}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có: \(f'\left( x \right) = 1 - \frac{4}{{{x^2}}} = 0 \Leftrightarrow \frac{{{x^2} - 4}}{{{x^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}
    x = 2 \in \left[ {1;3} \right]\\
    x =  - 2 \notin \left[ {1;3} \right]
    \end{array} \right.\)          

    Lại có \(f\left( 1 \right) = 5,f\left( 2 \right) = 4,f\left( 3 \right) = \frac{{13}}{3} \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \frac{{13}}{3},\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = 5\) hay tích hai giá trị bằng \(\frac{{65}}{3}\).         

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC