YOMEDIA

Bài tập 8 trang 91 SGK Hình học 12

Giải bài 8 tr 91 sách GK Toán Hình lớp 12

Cho điểm M(1 ; 4 ; 2) và mặt phẳng \(\small (\alpha ): x + y + z -1 = 0\)

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\small (\alpha )\).

b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng \(\small (\alpha )\).

c) Tính khoảng cách từ điểm M đến mặt phẳng \(\small (\alpha )\).

 

ADSENSE

Hướng dẫn giải chi tiết bài 8

Phương pháp:

Để tìm tọa độ H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\small (\alpha )\), ta thực hiện các bước sau:

+ Viết phương trình đường thẳng \(\Delta\) đi qua H và vuông góc với \(\small (\alpha )\).

+ Tìm tọa độ giao điểm của \(\Delta\) và \(\small (\alpha )\) chính là tọa độ điểm H cần tìm.

Điểm M' đối xứng với M qua \(\small (\alpha )\), suy ra H chính là trung điểm của MM'.

Áp dụng công thức tính khoảng cách từ một điểm đến mặt phẳng đến tính khoảng cách từ M đến \(\small (\alpha )\) hoặc tính độ dài MH cũng chính là khoảng cách từ M đến \(\small (\alpha )\).

Lời giải:

Câu a:

Vặt phẳng \((\alpha )\) vectơ pháp tuyến \(\vec{n}_\alpha =(1;1;1)\)

Gọi \(\Delta\) là đường thẳng đi qua M và vuông góc với \((\alpha )\), suy ra \(\vec{n}_\alpha =(1;1;1)\) là một vectơ chỉ phương của  \(\Delta\).

Vậy phương trình tham số của \(\Delta\) là: .

Toạ độ H lầ nghiệm của hệ phương trình: \(\left\{\begin{matrix} x=1+t \ \ (1)\\ y=4+t \ \ (2)\\ z=2+t \ \ (3)\\ x+y+z-1=0 \ \ (4)\end{matrix}\right.\)

Thay (1), (2), (3) vào (4) ta được:

1 + t + 4 + t + 2 + t - 1= 0 ⇔ 3t + 6 = 0 ⇔ t = -2

Khi đó x = -1; y= -2; z = 0.

Vậy H(-1;2;0).

Câu b:

Gọi M' là điểm đối xứng của M qua \((\alpha )\).

Suy ra H là trung điểm của MM'.

Nên: \(\left\{ \begin{array}{l} {x_H} = \frac{{{x_M} + {x_{M'}}}}{2}\\ {y_H} = \frac{{{y_M} + {y_{M'}}}}{2}\\ {z_H} = \frac{{{z_M} + {z_{M'}}}}{2} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {x_{M'}} = 2{x_H} - {x_M} = - 3\\ {y_{M'}} = 2{y_H} - {y_M} = 0\\ {z_{M'}} = 2{z_H} - {z_M} = - 2 \end{array} \right.\)

Vậy M'(-3 ; 0 ;2).

Câu c: 

Tính khoảng cách từ điểm M đến mặt phẳng \((\alpha )\) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến \((\alpha )\) chính là khoảng cách MH:

      d(M,(α) )= MH = .

-- Mod Toán 12 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 8 trang 91 SGK Hình học 12 HAY thì click chia sẻ 
  • thuy tien

    Tìm k, biết đường thẳng y= kx + 1 hợp với đường thẳng x-y = 0 một góc 60 độ

    Theo dõi (0) 1 Trả lời
  • Trịnh Lan Trinh

    Trong không gian với hệ trục tọa độ 0xyz , cho đường thẳng (d) \(\dfrac{x+1}{1}=\dfrac{y}{1}=\dfrac{Z-1}{-2}\). gọi (\(\Delta\)) là đường thẳng đi qua M(-1;0;-5) cắt và vuông góc với (d).một véctơ chỉ phương của (\(\Delta\)) là.

    A.\(\overrightarrow{u}\)(-1;1;0) B.\(\overrightarrow{u}\)(3;1;2) C.\(\overrightarrow{u}\)(1;3;2) D.\(\overrightarrow{u}\)(1;1;1)

    Giải giúp mình với , ths trước nha

    Theo dõi (0) 1 Trả lời
AMBIENT
?>