Bài tập 33 trang 104 SGK Hình học 12 NC
Cho đường thẳng Δ và mp(P) có phương trình:
\(\Delta :\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{2};\)
\(\left( P \right):2x + z - 5 = 0\)
a) Xác định tọa độ giao điểm A của Δ và (P).
b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với Δ
Hướng dẫn giải chi tiết
a) Phương trình tham số của Δ là:
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = 2 + 2t\\
z = 3 + 2t
\end{array} \right.\)
Thay x, y, z vào phương trình của mp(P) ta được:
2(1 + t) + 3 + 2t − 5 = 0 ⇔ t = 0
Vậy giao điểm của Δ và mp(P) là A(1; 2; 3).
b)
Gọi d là đường thẳng đi qua A nằm trong (P) và vuông góc với \(\Delta \). Vectơ chỉ phương \(\overrightarrow {u'} \) của d phải vuông góc với chỉ phương \(\overrightarrow u = \left( {1;2;2} \right)\) của \(\Delta \) đồng thời vuông góc với cả vectơ pháp tuyến \(\overrightarrow n = \left( {2;0;1} \right)\) của (P) nên ta chọn \(\overrightarrow {u'} = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( {2;3; - 4} \right)\).
Vậy d có phương trình tham số là
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 2 + 3t \hfill \cr
z = 3 - 4t \hfill \cr} \right.\)
-- Mod Toán 12 HỌC247
-
Viết phương trình mặt phẳng (P) chứa đường thẳng \(\Delta\), vuông góc với mặt phẳng (Oxy)
bởi Nhat nheo 07/02/2017
Em sẽ rất biết ơn ai giải giúp em bài này!
Trong không gian toạ độ Oxyz, cho đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y+1}{2}=\frac{z}{-1}\). Viết phương trình mặt phẳng (P) chứa đường thẳng \(\Delta\), vuông góc với mặt phẳng (Oxy) và viết phương trình đường thẳng \(\Delta\)' là hình chiếu vuông góc của \(\Delta\) lên mặt phẳng (Oxy).
Theo dõi (0) 1 Trả lời -
Viết phương trình mặt phẳng (P) sao cho đường thẳng \(\Delta\)2 là hình chiếu vuông góc của đường thẳng \(\Delta\)1 lên mặt phẳng (P)
bởi Bin Nguyễn 06/02/2017
Hôm nay thầy em giao bài này về nhà mà em không có biết làm, mn giúp em vs!
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(\Delta _1:\frac{x-1}{2}=\frac{y-3}{-3}=\frac{z}{2}\) và \(\Delta _2:\frac{x-3}{6}=\frac{y}{4}=\frac{z-2}{-5}\). Tìm tọa độ giao điểm của \(\Delta\)1 và \(\Delta\)2 và viết phương trình mặt phẳng (P) sao cho đường thẳng \(\Delta\)2 là hình chiếu vuông góc của đường thẳng \(\Delta\)1 lên mặt phẳng (P).
Theo dõi (0) 1 Trả lời -
Trong không gian Oxyz cho mặt phẳng (P):\(2x+y-2z+1=0\) và hai điểm \(A(1;-2;3), B(3;2;-1)\). Viết phương trình mặt phẳng (Q) qua A, B và vuông góc (P). Tìm điểm M trên trục Ox sao cho khoảng cách từ M đến (Q) bằng \(\sqrt{17}\) .
Theo dõi (0) 1 Trả lời -
Viết phương trình đường tròn đi qua M, có tâm thuộc d, cắt Δ tại A, B sao cho AB = \(3\sqrt{2}\).
bởi Lê Văn Duyệt 07/02/2017
Em sẽ rất biết ơn ai giải giúp em bài này!
Trong mặt phẳng với hệ tọa độ Oxy, cho các đường thẳng \(d: x+y-3=0, \Delta :x-y+2=0\) và điểm M(-1; 3). Viết phương trình đường tròn đi qua M, có tâm thuộc d, cắt Δ tại A, B sao cho AB = \(3\sqrt{2}\).
Theo dõi (0) 2 Trả lời -
Viết phương trình đường thẳng đi qua M(1;2;1), song song với (P) và vuông góc với đường thẳng d
bởi Lan Anh 07/02/2017
Trong không gian Oxyz , cho hai đường thẳng lần lượt có phương trình: \(\small d:\left\{\begin{matrix} x=1+t\\ y=2t\\ z=-1 \end{matrix}\right.\)và mặt phẳng \(\small (P): 2x+y-2z-1=0\)
a) Viết phương trình đường thẳng đi qua M(1;2;1), song song với (P) và vuông góc với đường thẳng d.
b) Viết phương trình mặt cầu có tâm thuộc đường thẳng d, bán kính bằng 3 và tiếp xúc với mp(P).Theo dõi (0) 2 Trả lời -
Tìm tọa độ điểm M thuộc đường thẳng AB và điểm N thuộc trục hoành sao cho đường thẳng vuông góc với đường thẳng CD
bởi Thiên Mai 07/02/2017
Trong không gian cho bốn điểm \(A(0;0;-1), B(1;2;1), C(2;1;-1), D(3;3;-3)\). Tìm tọa độ điểm M thuộc đường thẳng AB và điểm N thuộc trục hoành sao cho đường thẳng vuông góc với đường thẳng CD và độ dài MN = 3.
Theo dõi (0) 2 Trả lời