ON
YOMEDIA
VIDEO

Bài tập 33 trang 104 SGK Hình học 12 NC

Bài tập 33 trang 104 SGK Hình học 12 NC

Cho đường thẳng Δ và mp(P) có phương trình:

\(\Delta :\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{2};\)

\(\left( P \right):2x + z - 5 = 0\)

a) Xác định tọa độ giao điểm A của Δ và (P).

b) Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với Δ

YOMEDIA

Hướng dẫn giải chi tiết

 
 

a) Phương trình tham số của Δ là: 

\(\left\{ \begin{array}{l}
x = 1 + t\\
y = 2 + 2t\\
z = 3 + 2t
\end{array} \right.\)

Thay x, y, z vào phương trình của mp(P) ta được:
2(1 + t) + 3 + 2t − 5 = 0 ⇔ t = 0
Vậy giao điểm của Δ và mp(P) là A(1; 2; 3).

b) Gọi d là đường thẳng đi qua A nằm trong (P) và vuông góc với Δ. Vectơ chỉ phương \(\overrightarrow {u'} \) của d phải vuông góc với chỉ phương \(\overrightarrow {u} \) = (1; 2; 2) của Δ đồng thời vuông góc với cả vectơ pháp tuyến \(\overrightarrow u'} \) = (2; 0; 1) của (P) nên ta chọn \(\overrightarrow {u'}  = [\overrightarrow u ,\overrightarrow n ] = (2;3; - 4\)

Vậy d có phương trình tham số: 

\(\left\{ \begin{array}{l}
x = 1 + 2t\\
y = 2 + 3t\\
z = 3 - 4t
\end{array} \right.\)

-- Mod Toán 12 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 33 trang 104 SGK Hình học 12 NC HAY thì click chia sẻ 
YOMEDIA
  • Lê Vinh

    Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;-3) và hai đường thẳng \(d_1\left\{\begin{matrix} x=1+3t\\ x=-2-t\\ z=2t \end{matrix}\right., d_2\left\{\begin{matrix} x=2\\ y=2+t\\ z=5t \end{matrix}\right.\)  . Viết phương trình đường thẳng ∆ qua A, vuông góc với dvà cắt d2.

    Theo dõi (0) 3 Trả lời
  •  
     
    Chai Chai

    Trong mặt phẳng Oxyz cho hai đường thẳng: \(d_1=\left\{\begin{matrix} x=1\\ y=4+2t\\ z=3+t \end{matrix}\right.\)   \(d_2=\left\{\begin{matrix} x=-3t\\ y=3+t\\ z=-2 \end{matrix}\right.\)
    Viết phương trình đường vuông góc chung của hai đường thẳng d1, d2 và phương trình mặt cầu tiếp xúc với cả hai đường thẳng d1, d2.

    Theo dõi (0) 2 Trả lời

 

YOMEDIA
1=>1