Giải bài 3.31 tr 129 SBT Hình học 12
Viết phương trình tham số, phương trình chính tắc của đường thẳng \(\Delta \) trong các trường hợp sau:
a) \(\Delta \) đi qua điểm A(1; 2; 3) và có vecto chỉ phương \(\vec a = (3;3;1)\) ;
b) \(\Delta \) đi qua điểm B(1; 0; -1) và vuông góc với mặt phẳng \((\alpha )\) : 2x – y + z + 9 = 0
c) \(\Delta \) đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
Hướng dẫn giải chi tiết
a) Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm A(1; 2; 3) và có vecto chỉ phương \(\vec a = (3;3;1)\) là: \(\left\{ {\begin{array}{*{20}{c}}
{x = 1 + 3t}\\
{y = 2 + 3t}\\
{z = 3 + t}
\end{array}} \right.\)
Phương trình chính tắc của \(\Delta \) là \(\frac{{x - 1}}{3} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1}\)
b) \(\Delta \bot (\alpha ) \Rightarrow \overrightarrow {{a_\Delta }} = \overrightarrow {{a_\alpha }} = (2; - 1;1)\)
Phương trình tham số của \(\Delta \) là \(\left\{ {\begin{array}{*{20}{c}}
{x = 1 + 2t}\\
{y = - t}\\
{z = - 1 + t}
\end{array}} \right.\)
Phương trình chính tắc của \(\Delta \) là \(\frac{{x - 1}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{1}\)
c) \(\Delta \) đi qua hai điểm C và D nên có vecto chỉ phương \(\overrightarrow {CD} = (1;2;3)\)
Vậy phương trình tham số của \(\Delta \) là \(\left\{ {\begin{array}{*{20}{c}}
{x = 1 + t}\\
{y = - 1 + 2t}\\
{z = 1 + 3t}
\end{array}} \right.\)
Phương trình chính tắc của \(\Delta \) là \(\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{3}\)
-- Mod Toán 12 HỌC247
-
Hai đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{1} = \dfrac{{z - 4}}{{ - 2}}\) và \(\Delta ':\dfrac{{x + 2}}{{ - 4}} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z + 1}}{4}\). Hãy xét vị trí tương đối giữa \(\Delta \) và \(\Delta '\).
bởi Naru to 24/05/2021
Hai đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{1} = \dfrac{{z - 4}}{{ - 2}}\) và \(\Delta ':\dfrac{{x + 2}}{{ - 4}} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z + 1}}{4}\). Hãy xét vị trí tương đối giữa \(\Delta \) và \(\Delta '\).
Theo dõi (0) 1 Trả lời -
Hãy tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong trường hợp: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z = - 3t'}\end{array}} \right.\)
bởi Trịnh Lan Trinh 24/05/2021
Hãy tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong trường hợp: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z = - 3t'}\end{array}} \right.\)
Theo dõi (0) 1 Trả lời -
Hãy tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong trường hợp: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = - 1 - t}\\{z = 1}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t'}\\{y = 2 + 3t'}\\{z = 3t'}\end{array}} \right.\)
bởi Nguyễn Quang Thanh Tú 25/05/2021
Hãy tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong trường hợp: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = - 1 - t}\\{z = 1}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t'}\\{y = 2 + 3t'}\\{z = 3t'}\end{array}} \right.\)
Theo dõi (0) 1 Trả lời -
Với đường thẳng \(\Delta :\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{3} = \dfrac{{z + 1}}{2}\) và mặt phẳng \((\alpha )\): 2x – 2y + z + 3 = 0. Tính khoảng cách giữa \(\Delta \) và \((\alpha )\).
bởi Anh Trần 25/05/2021
Với đường thẳng \(\Delta :\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{3} = \dfrac{{z + 1}}{2}\) và mặt phẳng \((\alpha )\): 2x – 2y + z + 3 = 0. Tính khoảng cách giữa \(\Delta \) và \((\alpha )\).
Theo dõi (0) 1 Trả lời -
Với đường thẳng \(\Delta :\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{3} = \dfrac{{z + 1}}{2}\) và mặt phẳng \((\alpha )\): 2x – 2y + z + 3 = 0. Chứng minh rằng \(\Delta \) song song với \((\alpha )\).
bởi Mai Rừng 24/05/2021
Với đường thẳng \(\Delta :\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{3} = \dfrac{{z + 1}}{2}\) và mặt phẳng \((\alpha )\): 2x – 2y + z + 3 = 0. Chứng minh rằng \(\Delta \) song song với \((\alpha )\).
Theo dõi (0) 1 Trả lời -
Hãy tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{y}{2} = \dfrac{z}{1}\)
bởi thu phương 25/05/2021
Hãy tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{y}{2} = \dfrac{z}{1}\).
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 9 trang 91 SGK Hình học 12
Bài tập 10 trang 91 SGK Hình học 12
Bài tập 3.32 trang 129 SBT Hình học 12
Bài tập 3.33 trang 129 SBT Hình học 12
Bài tập 3.34 trang 129 SBT Hình học 12
Bài tập 3.35 trang 129 SBT Hình học 12
Bài tập 3.36 trang 130 SBT Hình học 12
Bài tập 3.37 trang 130 SBT Hình học 12
Bài tập 3.38 trang 130 SBT Hình học 12
Bài tập 3.39 trang 130 SBT Hình học 12
Bài tập 3.40 trang 130 SBT Hình học 12
Bài tập 3.42 trang 131 SBT Hình học 12
Bài tập 3.43 trang 131 SBT Hình học 12
Bài tập 3.44 trang 131 SBT Hình học 12
Bài tập 3.45 trang 131 SBT Hình học 12
Bài tập 24 trang 102 SGK Hình học 12 NC
Bài tập 25 trang 102 SGK Hình học 12 NC
Bài tập 26 trang 102 SGK Hình học 12 NC
Bài tập 27 trang 103 SGK Hình học 12 NC
Bài tập 28 trang 103 SGK Hình học 12 NC
Bài tập 29 trang 103 SGK Hình học 12 NC
Bài tập 30 trang 103 SGK Hình học 12 NC
Bài tập 31 trang 103 SGK Hình học 12 NC
Bài tập 32 trang 104 SGK Hình học 12 NC
Bài tập 33 trang 104 SGK Hình học 12 NC