Bài tập 34 trang 104 SGK Hình học 12 NC
a) Tính khoảng cách từ điểm M(2; 3; 1) đến đường thẳng Δ có phương trình \(\frac{{x + 2}}{1} = \frac{{y - 1}}{2} = \frac{{z + 1}}{{ - 2}}\)
b) Tính khoảng cách từ điểm N(2;3;−1) đến đường thẳng Δ đi qua điểm \({M_0}\left( { - \frac{1}{2};0; - \frac{3}{4}} \right)\) và có vectơ chỉ phương \(\vec u = \left( { - 4;2; - 1} \right)\)
Hướng dẫn giải chi tiết
a) Đường thẳng Δ đi qua M0(−2;1;−1) và có vectơ chỉ phương \(\vec u = \left( {1;2; - 2} \right)\)
Ta có: \(\overrightarrow {{M_0}M} = \left( {4;2;2} \right);\)
\(\left[ {\vec u;\overrightarrow {{M_0}M} } \right] = \left( {8; - 10; - 6} \right)\)
Vậy khoảng cách cần tìm là:
\(\begin{array}{l}
d = \frac{{\left| {\left[ {\vec u;\overrightarrow {{M_0}M} } \right]} \right|}}{{|\vec u|}}\\
= \frac{{\sqrt {{8^2} + {{\left( { - 10} \right)}^2} + {{\left( { - 6} \right)}^2}} }}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{10\sqrt 2 }}{3}
\end{array}\)
b) Ta có: \(\overrightarrow {{M_0}N} = \left( {\frac{5}{2};3; - \frac{1}{4}} \right);\)
\(\left[ {\vec u;\overrightarrow {{M_0}N} } \right] = \left( {\frac{5}{2}; - \frac{7}{2};17} \right)\)
Vậy khoảng cách là:
\(\begin{array}{l}
d = \frac{{\left| {\left[ {\vec u;\overrightarrow {{M_0}N} } \right]} \right|}}{{|\vec u|}}\\
= \frac{{\sqrt {{{\left( {\frac{5}{2}} \right)}^2} + {{\left( { - \frac{7}{2}} \right)}^2} + {{17}^2}} }}{{\sqrt {{4^2} + {2^2} + {1^2}} }} = \frac{{\sqrt {2970} }}{{14}}
\end{array}\)
-- Mod Toán 12 HỌC247
-
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;-3) và hai đường thẳng \(d_1\left\{\begin{matrix} x=1+3t\\ x=-2-t\\ z=2t \end{matrix}\right., d_2\left\{\begin{matrix} x=2\\ y=2+t\\ z=5t \end{matrix}\right.\) . Viết phương trình đường thẳng ∆ qua A, vuông góc với d1 và cắt d2.
Theo dõi (0) 3 Trả lời -
Viết phương trình đường vuông góc chung của hai đường thẳng d1, d2 và phương trình mặt cầu tiếp xúc với cả hai đường thẳng d1, d2
bởi Chai Chai 07/02/2017
Trong mặt phẳng Oxyz cho hai đường thẳng: \(d_1=\left\{\begin{matrix} x=1\\ y=4+2t\\ z=3+t \end{matrix}\right.\) \(d_2=\left\{\begin{matrix} x=-3t\\ y=3+t\\ z=-2 \end{matrix}\right.\)
Viết phương trình đường vuông góc chung của hai đường thẳng d1, d2 và phương trình mặt cầu tiếp xúc với cả hai đường thẳng d1, d2.Theo dõi (0) 2 Trả lời