• Câu hỏi:

    Xét các số thực dương x, y thỏa mãn \({\log _{\frac{1}{2}}}x + {\log _{\frac{1}{2}}}y \le {\log _{\frac{1}{2}}}\left( {x + {y^2}} \right)\). Tìm giá trị nhỏ nhất \(P_{min}\) của biểu thức \(P = x + 3y\). 

    • A. \({P_{\min }} = \frac{{17}}{2}.\)
    • B. \({P_{\min }} = 8.\)
    • C. \({P_{\min }} = 9.\)
    • D. \({P_{\min }} = \frac{{25\sqrt 2 }}{4}.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Theo bài ra ta có:

    \({\log _{\frac{1}{2}}}x + {\log _{\frac{1}{2}}}y \le {\log _{\frac{1}{2}}}\left( {x + {y^2}} \right) \Leftrightarrow {\log _{\frac{1}{2}}}\left( {xy} \right) \le {\log _{\frac{1}{2}}}\left( {x + {y^2}} \right) \Leftrightarrow xy \ge x + {y^2}\)

    \( \Leftrightarrow x\left( {y - 1} \right) \ge {y^2} > 0\). Mà \(x > 0 \Rightarrow y - 1 > 0 \Leftrightarrow y > 1\).

    \(x \ge \frac{{{y^2}}}{{y - 1}}\). Khi đó ta có \(P = x + 3y \ge \frac{{{y^2}}}{{y - 1}} + 3y\) với y > 1.

    Xét hàm số \(f\left( y \right) = \frac{{{y^2}}}{{y - 1}} + 3y\) với y > 1 ta có:

    \(f'\left( y \right) = \frac{{2y\left( {y - 1} \right) - {y^2}}}{{{{\left( {y - 1} \right)}^2}}} + 3 = \frac{{{y^2} - 2y + 3{y^2} - 6y + 3}}{{{{\left( {y - 1} \right)}^2}}} = \frac{{4{y^2} - 8y + 3}}{{{{\left( {y - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}
    y = \frac{3}{2}\\
    y = \frac{1}{2}
    \end{array} \right.\) 

    BBT:

    Từ BBT ta thấy \(\mathop {\min }\limits_{y > 1} f\left( y \right) = f\left( {\frac{3}{2}} \right) = 9\).

    Vậy \(P \ge 9\) hay \({P_{\min }} = 9\).      

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC