YOMEDIA
  • Câu hỏi:

    Gọi \(x_0\) là nghiệm dương nhỏ nhất của phương trình \(3{\sin ^2}x + 2\sin x\cos x - {\cos ^2}x = 0\). Chọn khẳng định đúng?

    • A. \({x_0} \in \left( {\frac{\pi }{2};\pi } \right).\)
    • B. \({x_0} \in \left( {\frac{{3\pi }}{2};2\pi } \right).\)
    • C. \({x_0} \in \left( {0;\frac{\pi }{2}} \right).\)
    • D. \({x_0} \in \left( {\pi ;\frac{{3\pi }}{2}} \right).\)
     

    Lời giải tham khảo:

    Đáp án đúng: C

    Phương trình: \(3{\sin ^2}x + 2\sin x.cosx - {\cos ^2}x = 0\,\,\left( * \right)\) 

    \( + )\,\,\cos x = 0 \Rightarrow {\sin ^2}x = 1\) không phải là nghiệm của phương trình (*)

    \( + )\,\,\cos x \ne 0\). Ta có:

    \(\begin{array}{l}
    3{\sin ^2}x + 2\sin x.cosx - {\cos ^2}x = 0\,\, \Leftrightarrow 3\frac{{xi{n^2}x}}{{{{\cos }^2}x}} + 2\frac{{\sin x}}{{cosx}} - 1 = 0\\
     \Leftrightarrow 3.{\tan ^2}x + 2\tan x - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}
    \tan x =  - 1\\
    \tan x = \frac{1}{3}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x =  - \frac{\pi }{4} + k\pi ,k \in Z\\
    x = arc\tan \frac{1}{3} + k\pi ,k \in Z
    \end{array} \right.\\

    \end{array}\)

    Nghiệm nguyên dương nhỏ nhất của phương trình là \(x = \arctan \frac{1}{3} \in \left( {0;\frac{\pi }{2}} \right).\) 

    VDOC

Mã câu hỏi: 90653

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

 
 

CÂU HỎI KHÁC

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 246_1599883038.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/thptqg/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-09-12 00:00:00
            [banner_enddate] => 2020-09-30 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

    [1] => Array
        (
            [banner_picture] => 405_1600325774.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-09-17 13:56:00
            [banner_enddate] => 2020-09-30 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)