AMBIENT
  • Câu hỏi:

    Cho \(\int {2x{{\left( {3x - 2} \right)}^6}dx = A{{\left( {3x - 2} \right)}^8} + B{{\left( {3x - 2} \right)}^7} + C} \) với \(A,B,C \in R\). Tính giá trị của biểu thức 12A + 7B.  

    • A. \(\frac{{23}}{{252}}.\)
    • B. \(\frac{{241}}{{252}}.\)
    • C. \(\frac{{52}}{9}.\)
    • D. \(\frac{{7}}{9}.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    \(I = \int {2x{{\left( {3x - 2} \right)}^6}dx} \) 

    Đặt \(3x - 2 = t \Rightarrow x = \frac{{t + 2}}{3} \Rightarrow dx = \frac{1}{3}dt.\) 

    \(\begin{array}{l}
     \Rightarrow I = \int {\frac{2}{9}\left( {t + 2} \right){t^6}dt = } \frac{2}{9}\int {\left( {{t^7} + 2{t^6}} \right)dt = \frac{2}{9}\left( {\frac{{{t^8}}}{8} + \frac{{2{t^7}}}{7}} \right) + C = \frac{1}{{36}}{t^8} + \frac{4}{{63}}{t^7} + C.} \\
     \Rightarrow I = \frac{1}{{36}}{\left( {3x - 2} \right)^8} + \frac{4}{{63}}{\left( {3x - 2} \right)^7} + C.\\
     \Rightarrow \left\{ \begin{array}{l}
    A = \frac{1}{{36}}\\
    B = \frac{4}{{63}}
    \end{array} \right. \Rightarrow 12A + 7B = 12.\frac{1}{{36}} + 7.\frac{4}{{63}} = \frac{7}{9}.
    \end{array}\)

    ADSENSE

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AMBIENT
?>