• Câu hỏi:

    Cho hình trụ có đáy là hai đường tròn tâm O và O', bán kinh đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O' lấy điểm B. Đặt \(\alpha \) là góc giữa AB và đáy. Tính \(\tan \alpha \) khi thể tích khối tứ diện OO'AB đạt giá trị lớn nhất.

    • A. \(\tan \alpha  = \frac{1}{{\sqrt 2 }}.\)
    • B. \(\tan \alpha  = \frac{1}{2}.\)
    • C. \(\tan \alpha  = 1.\)
    • D. \(\tan \alpha  = \sqrt 2 .\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Lấy điểm \(A' \in \left( {O'} \right),B' \in \left( O \right)\) sao cho AA', BB' song song với trục OO'.

    Khi đó ta có lăng trụ đứng OAB'.O'A'B.

    Ta có:

    \(\begin{array}{l}
    {V_{OO'AB}} = {V_{OAB'.O'A'B}} - {V_{A.O'A'B}} - {V_{B.OAB'}}\\
    \,\,\,\,\,\,\,\,\,\,\,\,\, = {V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} = \frac{1}{3}{V_{OAB'.O'A'B}}\\
     \Rightarrow {V_{OO'AB}} = \frac{1}{3}.AA'.{S_{\Delta OAB'}} = \frac{1}{6}AA'.OA.OB.\sin \angle AOB'\\
     = \frac{1}{6}.2a.2a.2a.\sin \angle AOB' = \frac{1}{6}.8{a^3}\sin \angle AOB' = \frac{{4{a^3}}}{3}\sin \angle AOB'
    \end{array}\) 

    Do đó để \({V_{OO'AB}}\) lớn nhất \( \Leftrightarrow \sin \angle AOB' = 1 \Leftrightarrow \angle AOB' = {90^0} \Leftrightarrow OA \bot OB'\).

    \( \Rightarrow O'A' \bot O'B \Rightarrow \Delta O'A'B\) vuông tại \(O' \Rightarrow A'B = O'A'\sqrt 2  = 2a\sqrt 2 \).

    Ta có

    \(\begin{array}{l}
    AA' \bot \left( {O'A'B} \right) \Rightarrow \angle \left( {AB;\left( {O'A'B} \right)} \right) = \angle ABA' = \alpha \\
     \Rightarrow \tan \alpha  = \frac{{AA'}}{{A'B}} = \frac{{2a}}{{2a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}
    \end{array}\)   

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC