YOMEDIA
  • Câu hỏi:

    Cho hình chóp S.ABC có đáy \(\Delta ABC\) vuông cân ở B, \(AC = a\sqrt 2 ,SA \bot \left( {ABC} \right),SA = a\). Gọi G là trọng tâm của \(\Delta SBC\), mp \(\left( \alpha  \right)\) đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.  

    • A. \(\frac{{5{a^3}}}{{54}}.\)
    • B. \(\frac{{4{a^3}}}{9}.\)
    • C. \(\frac{{2{a^3}}}{9}.\)
    • D. \(\frac{{4{a^3}}}{{27}}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Trong (SBC) qua G kẻ \(MN//BC\left( {M \in SB,N \in SC} \right)\). Khi đó mặt phẳng đi qua AG và song song với BC chính là mặt phẳng (AMN). Mặt phẳng này chia khối chóp thành 2 khối S.AMN và AMNBC.

    Gọi H là trung điểm của BC.

    Vì \(MN//BC \Rightarrow \) Theo định lí Ta-lét ta có: \(\frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{2}{3}\left( { = \frac{{SG}}{{SH}}} \right)\) 

    \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_{S.AMN}} = \frac{4}{9}{V_{S.ABC}}\) 

    Mà \({V_{S.AMN}} + {V_{AMNBC}} = {V_{S.ABC}} \Rightarrow {V_{AMNBC}} = \frac{5}{9}{V_{S.ABC}} = V\) 

    Ta có \(\Delta ABC\) vuông cân tại \(B \Rightarrow AB = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}{a^2}\) 

    \( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{1}{3}a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{6}\) 

    Vậy \(V = \frac{5}{9}.\frac{{{a^3}}}{6} = \frac{{5{a^3}}}{{54}}\).

    ADMICRO

Mã câu hỏi: 90771

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

 
 

CÂU HỎI KHÁC

 

YOMEDIA