Giải bài 2 tr 68 sách GK Toán ĐS lớp 10
Giải các hệ phương trình
a) \(\left\{\begin{matrix} 2x - 3y = 1 & \\ x + 2y = 3;& \end{matrix}\right.\)
b) \(\left\{\begin{matrix} 3x + 4y = 5 & \\ 4x - 2y = 2;& \end{matrix}\right.\)
c) \(\left\{ \begin{array}{l}\frac{2}{3}x + \frac{1}{2}y = \frac{2}{3}\\\frac{1}{3}x - \frac{3}{4}y = \frac{1}{2}\end{array} \right.\)
d) \(\left\{ \begin{array}{l}0,3x - 0,2y = 0,5\\0,5x + 0,4y = 1,2.\end{array} \right.\)
Hướng dẫn giải chi tiết bài 2
Câu a:
\(\left\{ \begin{array}{l}2x - 3y = 1\\x + 2y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 3y = 1\,\,\,(1)\\x = 3 - 2y\,\,\,\,\,\,(2)\end{array} \right.\)
Thế (2) vào (1) suy ra:
\(2(3 - 2y) - 3y = 1 \Leftrightarrow - 7y = - 5 \Leftrightarrow y = \frac{5}{7}\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = \frac{{11}}{7}\\y = \frac{5}{7}\end{array} \right.\)
Câu b:
\(\left\{ \begin{array}{l}3x + 4y = 5\\4x - 2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 4y = 5\\8x - 4y = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}11x = 9\\y = \frac{{5 - 3x}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{{11}}\\y = \frac{7}{{11}}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = \frac{9}{{11}}\\y = \frac{7}{{11}}\end{array} \right.\)
Câu c:
\(\left\{ \begin{array}{l}\frac{2}{3}x + \frac{1}{2}y = \frac{2}{3}\\\frac{1}{3}x - \frac{3}{4}y = \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 3y = 4\\4x - 9y = 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}12y = - 2\\x = \frac{{4 - 3y}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = - \frac{1}{6}\\x = \frac{9}{8}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = \frac{9}{8}\\y = - \frac{1}{6}\end{array} \right.\)
Câu d:
\(\left\{ \begin{array}{l}0,3x - 0,2y = 0,5\\0,5x + 0,4y = 1,2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 5\\5x + 4y = 12\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}6x - 4y = 10\\5x + 4y = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}11x = 22\\y = \frac{{12 - 5x}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = \frac{1}{2}\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left\{ \begin{array}{l}x = 2\\y = \frac{1}{2}\end{array} \right.\)
-- Mod Toán 10 HỌC247
-
Tìm giá trị của m để hệ phương trình cho sau vô nghiệm: \(\left\{ \begin{array}{l}3x + 2y = 9\\mx - 2y = 2;\end{array} \right.\)
bởi Nguyễn Minh Hải 25/04/2022
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình cho sau đây: \(\left\{ \begin{array}{l}x + y + z = 7\\3x - 2y + 2z = 5\\4x - y + 3z = 10\end{array} \right.\)
bởi het roi 25/04/2022
Theo dõi (0) 1 Trả lời -
Giải hệ phương trình cho sau đây: \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + z = 12}\\{2x - y + 3z = 18}\\{ - 3x + 3y + 2z = - 9}\end{array}} \right.\)
bởi Hữu Trí 24/04/2022
Theo dõi (0) 1 Trả lời -
Một công ti có 85 xe chở khách gôm hai loại, xe chở được 4 khách và xe chở được 7 khách. Dùng tất cả số xe đó, tối đa công ti chở một lần được 445 khách. Hãy cho biết công ti đó có mấy xe mỗi loại?
bởi Hoang Vu 25/04/2022
Một công ti có 85 xe chở khách gôm hai loại, xe chở được 4 khách và xe chở được 7 khách. Dùng tất cả số xe đó, tối đa công ti chở một lần được 445 khách. Hãy cho biết công ti đó có mấy xe mỗi loại?
Theo dõi (0) 1 Trả lời -
Tìm m để x² - 2mx + m² - m - 6 = 0 có 2 nghiệm phân biệt
Theo dõi (0) 0 Trả lời
Bài tập SGK khác
Bài tập 1 trang 68 SGK Đại số 10
Bài tập 3 trang 68 SGK Đại số 10
Bài tập 4 trang 68 SGK Đại số 10
Bài tập 5 trang 68 SGK Đại số 10
Bài tập 6 trang 68 SGK Đại số 10
Bài tập 7 trang 68 SGK Đại số 10
Bài tập 3.26 trang 73 SBT Toán 10
Bài tập 3.27 trang 73 SBT Toán 10
Bài tập 3.28 trang 74 SBT Toán 10
Bài tập 3.29 trang 74 SBT Toán 10
Bài tập 3.30 trang 74 SBT Toán 10
Bài tập 3.31 trang 74 SBT Toán 10
Bài tập 3.32 trang 74 SBT Toán 10
Bài tập 3.33 trang 75 SBT Toán 10
Bài tập 3.34 trang 75 SBT Toán 10
Bài tập 3.35 trang 75 SBT Toán 10
Bài tập 3.36 trang 75 SBT Toán 10
Bài tập 3.37 trang 75 SBT Toán 10
Bài tập 3.38 trang 76 SBT Toán 10
Bài tập 22 trang 84 SGK Toán 10 NC
Bài tập 23 trang 84 SBT Toán 10 NC
Bài tập 24 trang 84 SGK Toán 10 NC
Bài tập 25 trang 85 SGK Toán 10 NC
Bài tập 26 trang 85 SGK Toán 10 NC
Bài tập 27 trang 85 SGK Toán 10 NC
Bài tập 28 trang 85 SGK Toán 10 NC
Bài tập 29 trang 85 SGK Toán 10 NC
Bài tập 33 trang 94 SGK Toán 10 NC
Bài tập 34 trang 94 SGK Toán 10 NC
Bài tập 35 trang 94 SGK Toán 10 NC
Bài tập 36 trang 96 SGK Toán 10 NC
Bài tập 37 trang 97 SGK Toán 10 NC
Bài tập 38 trang 97 SGK Toán 10 NC
Bài tập 39 trang 97 SGK Toán 10 NC
Bài tập 40 trang 97 SGK Toán 10 NC
Bài tập 41 trang 97 SGK Toán 10 NC
Bài tập 42 trang 97 SGK Toán 10 NC
Bài tập 43 trang 97 SGK Toán 10 NC
Bài tập 44 trang 97 SGK Toán 10 NC
Bài tập 45 trang 100 SGK Toán 10 NC
Bài tập 46 trang 100 SGK Toán 10 NC
Bài tập 47 trang 100 SGK Toán 10 NC