AMBIENT
  • Câu hỏi:

    Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-2; 1; 2) và đi qua điểm A(1; -2; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng

    • A. 72
    • B. 216
    • C. 108
    • D. 36

    Lời giải tham khảo:

    Đáp án đúng: D

    Đặt AB = a, AC = b, AD = c thì ABCD là tứ diện vuông đỉnh A, nội tiếp mặt cầu (S).

    Khi đó ABCD là tứ diện đặt ở góc A của hình hộp chữ nhật tương ứng có các cạnh AB, AC, AD và đường chéo AA' là đường kính của cầu. Ta có \({a^2} + {b^2} + {c^2} = 4{R^2}\).

    Xét \( = {V_{ABCD}} = \frac{1}{6}abc \Leftrightarrow {V^2} = \frac{1}{{36}}{a^2}{b^2}{c^2}\).

    Mà \({a^2} + {b^2} + {c^2} \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} \Leftrightarrow {\left( {\frac{{{a^2} + {b^2} + {c^2}}}{3}} \right)^3} \ge {a^2}{b^2}{c^2} \Leftrightarrow {\left( {\frac{{4{R^2}}}{3}} \right)^3} \ge 36.{V^2}\)

    \( \Leftrightarrow V \le {R^3}.\frac{{4\sqrt 3 }}{{27}}\)

    Với \(R = IA = 3\sqrt 3 \).

    Vậy \({V_{\max }} = 36\). 

    ADSENSE

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AMBIENT
?>