Đại số 9 Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai

5 trắc nghiệm 15 bài tập SGK 1 hỏi đáp

Trong bài học này, các em sẽ được học và làm quen với việc đưa thừa số ra ngoài, vào trong dấu căn, trục căn thức ở mẫu...

Tóm tắt lý thuyết

1. Đưa thừa số ra ngoài dấu căn bậc hai

Với \(a\geq 0;b\geq 0\), liệu \(\sqrt{a^2b}=a\sqrt{b}\) ?

Một cách tổng quát:

Với hai biểu thức A, B mà \(B\geq 0\), ta có \(\sqrt{A^2B}=|A|\sqrt{B}\), tức là:
Nếu \(A\geq 0; B\geq 0\Rightarrow \sqrt{A^2B}=A\sqrt{B}\)

Nếu \(A<0; B\geq 0\Rightarrow \sqrt{A^2B}=-A\sqrt{B}\)

2. Đưa thừa số vào trong dấu căn bậc hai

Phép đưa thừa số ra ngoài dấu căn có phép biến đổi ngược với nó là đưa thừa số vào trong dấu căn.

Một cách tổng quát:

Với \(A\geq 0;B\geq 0\Rightarrow A\sqrt{B}=\sqrt{A^2B}\)

Với \(A<0;B\geq 0\Rightarrow A\sqrt{B}=-\sqrt{A^2B}\)

3. Khử mẫu của biểu thức lấy căn bậc hai

Khi biến đổi biểu thức chứa căn bậc hai, người ta có thể sử dụng phép khử mẫu của biểu thức lấy căn.

Một cách tổng quát: 

Với \(A\geq 0;B\neq 0\Rightarrow \sqrt{\frac{A}{B}}=\frac{\sqrt{AB}}{|B|}\)

4. Trục căn thức bậc hai ở mẫu

Một cách tổng quát:

Với các biểu thức A, B mà \(B>0\), ta có: \(\frac{A}{\sqrt{B}}=\frac{a\sqrt{B}}{B}\)

Với các biểu thức A, B, C mà \(A\geq 0, A\neq B^2\), ta có \(\frac{C}{\sqrt{A}\pm B}=\frac{C(\sqrt{A}\pm B)}{A-B^2}\)

Với các biểu thức A, B, C mà \(A,B\geq 0;A\neq B\), ta có \(\frac{C}{\sqrt{A}\pm \sqrt{B}}=\frac{C(\sqrt{A}\pm \sqrt{B})}{A-B}\)

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: 

Viết các số sau dưới dạng tích rồi đưa ra ngoài dấu căn:  \(\sqrt{54}\) ; \(0,1\sqrt{20000}\)

Hướng dẫn giải

\(\sqrt{54}=\sqrt{9.6}=\sqrt{3^2.6}=3\sqrt{6}\)

\(0,1\sqrt{20000}=0,1\sqrt{2.10^4}=100.0,1\sqrt{2}=10\sqrt{2}\)

Bài 2:

Đưa thừa số vào trong dấu căn: \(6\sqrt{3}\) ; \(-\frac{1}{6}\sqrt{ab}; (ab\geq 0)\)

Hướng dẫn giải:

\(6\sqrt{3}=\sqrt{6^2.3}=\sqrt{108}\)

\(-\frac{1}{6}\sqrt{ab}=-\sqrt{\frac{1^2}{6^2}ab}=-\sqrt{\frac{ab}{36}}\)

Bài 3: 

Rút gọn các biểu thức sau (Giả sử các biểu thức đều có nghĩa)

\(\frac{2+\sqrt{2}}{1+\sqrt{2}}\) ; \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}\)

Hướng dẫn giải:

 \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}(\sqrt{2}+1)}{1+\sqrt{2}}=\sqrt{2}\)

\(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}(\sqrt{p}-2)}{\sqrt{p}-2}=\sqrt{p}\)

2. Bài tập nâng cao

Bài 1: 

Rút gọn biểu thức sau với x không âm: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)

Hướng dẫn giải:

\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28=3\sqrt{2x}-5\sqrt{2^2.2x}+6\sqrt{3^2.2x}+28=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=28(\sqrt{2x}+1)\)

Bài 2: 

Phân tích đa thức sau thành nhân tử: \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\) với x, y không âm.

Hướng dẫn giải:

\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=x(\sqrt{x}+\sqrt{y})-y(\sqrt{x}+\sqrt{y})=(x-y)(\sqrt{x}+\sqrt{y})\)

Lời kết

Nội dung bài học đã giới thiệu đến các em Biến đổi đơn giản biểu thức chứa căn thức bậc hai. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Đại số 9 Bài 6 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Đại số 9 Bài 6 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Đại số 9 Bài 6 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9.

-- Mod Toán Học 9 HỌC247