YOMEDIA
NONE

Bài tập 77 trang 17 SBT Toán 9 Tập 1

Giải bài 77 tr 17 sách BT Toán lớp 9 Tập 1

Tìm x, biết: 

a) \(\sqrt {2x + 3}  = 1 + \sqrt 2 \)

b) \(\sqrt {10 + \sqrt {3x} }  = 2 + \sqrt 6 \)

c) \(\sqrt {3x - 2}  = 2 - \sqrt 3 \)

d) \(\sqrt {x + 1}  = \sqrt 5  - 3\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Áp dụng:

\(\sqrt A  = m \Leftrightarrow A = {m^2}\)  (với \(m\ge 0\)) 

Lời giải chi tiết

a) 

\(\eqalign{
& \sqrt {2x + 3} = 1 + \sqrt 2 \Leftrightarrow 2x + 3 = {(1 + \sqrt 2 )^2} \cr
& \Leftrightarrow 2x + 3 = 1 + 2\sqrt 2 + 2 \cr} \)

b) \(\sqrt {10 + \sqrt {3x} }  = 2 + \sqrt 6 \)

\( \Leftrightarrow 10 + \sqrt {3x}  = {(2 + \sqrt 6 )^2}\)

\( \Leftrightarrow 10 + \sqrt {3x}  = 4 + 4\sqrt 6  + 6 \Leftrightarrow \sqrt {3x}  = 4\sqrt 6 \)

\( \Leftrightarrow x = {{4\sqrt 6 } \over {\sqrt 3 }} \Leftrightarrow x = 4\sqrt 2 \)

c) 

\(\eqalign{
& \sqrt {3x - 2} = 2 - \sqrt 3 \Leftrightarrow 3x - 2 = {(2 - \sqrt 3 )^2} \cr
& \Leftrightarrow 3x - 2 = 4 - 4\sqrt 3 + 3 \cr} \)

\( \Leftrightarrow 3x = 9 - 4\sqrt 3  \Leftrightarrow x = {{9 - 4\sqrt 3 } \over 3}\)

d) \(\sqrt {x + 1}  = \sqrt 5  - 3\)

Ta có:

\(\sqrt 5 \) < \(\sqrt 9 \) \( \Leftrightarrow \sqrt 5  < 3 \Leftrightarrow \sqrt 5  - 3 < 0\)

Không có giá trị nào của x để \(\sqrt {x + 1}  = \sqrt 5  - 3\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 77 trang 17 SBT Toán 9 Tập 1 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON