Giải bài 4 tr 107 sách GK sách GK Toán ĐS & GT lớp 11
Cho hai cấp số nhân có cùng có các số hạng. Tích các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.
Gợi ý trả lời bài 4
Ta có (an) là cấp số nhân và (bn) là cấp số nhân tương ứng.
Ta có:
an= a1. q1n-1, q1 là hằng số
bn= b1. q1n-1, q2 là hằng số
Khi đó: an.bn = = a1. q1n-1. b1. q1n-1 = (a1b1)(q1q2)n-1
Vậy dãy số anbn là một cấp số nhân có công bội : q = q1q2
Ví dụ:
1, 2, 4 ,... là cấp số nhân có công bội q1 = 2
3, 9, 27, .... là cấp số nhân có công bội q2 = 3
⇒ Suy ra: 3, 8, 108.. là cấp số nhân có công bội: q = q1q2 = 2.3 = 6
-- Mod Toán 11 HỌC247
-
Cho dãy số\(\left( {{u_n}} \right)\): \(\left\{ {\begin{array}{*{20}{l}} {{u_1} = 1,{u_2} = 2}\\ {{u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 1\;\;\;\;{\rm{voi}}\;\;\;{\rm{n}} \ge {\rm{2}}.} \end{array}} \right.\). Viết năm số hạng đầu của dãy số
bởi Bình Nguyen 18/04/2022
Theo dõi (0) 1 Trả lời -
Thực hiện chứng minh các bất đẳng thức sau: \({2^{n - 3}} > 3n - 1\) với \(n \ge 8.\)
bởi Bình Nguyen 18/04/2022
Theo dõi (0) 1 Trả lời -
Thực hiện chứng minh các bất đẳng thức sau: \({3^{n - 1}} > n\left( {n + 2} \right)\) với \(n \ge 4\)
bởi Mai Rừng 18/04/2022
Theo dõi (0) 1 Trả lời -
Chứng minh đẳng thức sau với \(n \in {N^*}\), biết: \({S_n} = \sin x + \sin 2x + \sin 3x + ... + \sin nx \) \(= \dfrac{{\sin \dfrac{{nx}}{2}.\sin \dfrac{{\left( {n + 1} \right)x}}{2}}}{{\sin \dfrac{x}{2}}}.\)
bởi Kim Ngan 18/04/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 2 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 3 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 5 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 6 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 7 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 8 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 9 trang 107 SGK SGK Đại số & Giải tích 11
Bài tập 10 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 11 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 12 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 13 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 14 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 15 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 16 trang 108 SGK SGK Đại số & Giải tích 11
Bài tập 17 trang 109 SGK SGK Đại số & Giải tích 11
Bài tập 18 trang 109 SGK SGK Đại số & Giải tích 11
Bài tập 19 trang 109 SGK SGK Đại số & Giải tích 11
Bài tập 3.37 trang 132 SBT Toán 11
Bài tập 3.38 trang 132 SBT Toán 11
Bài tập 3.39 trang 133 SBT Toán 11
Bài tập 3.40 trang 133 SBT Toán 11
Bài tập 3.41 trang 133 SBT Toán 11
Bài tập 3.42 trang 133 SBT Toán 11
Bài tập 3.43 trang 133 SBT Toán 11
Bài tập 3.44 trang 133 SBT Toán 11
Bài tập 3.45 trang 133 SBT Toán 11
Bài tập 3.46 trang 133 SBT Toán 11
Bài tập 3.47 trang 134 SBT Toán 11
Bài tập 3.48 trang 134 SBT Toán 11
Bài tập 3.49 trang 134 SBT Toán 11
Bài tập 3.50 trang 134 SBT Toán 11
Bài tập 3.51 trang 134 SBT Toán 11
Bài tập 3.52 trang 134 SBT Toán 11
Bài tập 3.53 trang 134 SBT Toán 11
Bài tập 3.54 trang 134 SBT Toán 11
Bài tập 3.55 trang 135 SBT Toán 11
Bài tập 3.56 trang 135 SBT Toán 11
Bài tập 44 trang 122 SGK Toán 11 NC
Bài tập 45 trang 123 SGK Toán 11 NC
Bài tập 46 trang 123 SGK Toán 11 NC
Bài tập 47 trang 123 SGK Toán 11 NC
Bài tập 48 trang 123 SGK Toán 11 NC
Bài tập 49 trang 124 SGK Toán 11 NC
Bài tập 50 trang 124 SGK Toán 11 NC
Bài tập 51 trang 124 SGK Toán 11 NC
Bài tập 52 trang 125 SGK Toán 11 NC
Bài tập 53 trang 125 SGK Toán 11 NC
Bài tập 54 trang 125 SGK Toán 11 NC
Bài tập 55 trang 125 SGK Toán 11 NC