Toán 12 Ôn tập chương 3 Nguyên hàm, Tích phân và Ứng dụng


Bài ôn tập chương Nguyên hàm - Tích phân và ứng dụng sẽ giúp các em hệ thống lại kiến thức của toàn bộ các bài đã học thông qua các sơ đồ, cùng với đó là các bảng tra cứu nhanh nguyên hàm các hàm số quen thuộc,...sẽ giúp các em ghi nhớ bài học tốt hơn.

Hãy đăng ký kênh Youtube HOC247 TV để theo dõi Video mới

Tóm tắt lý thuyết

2.1. Sơ đồ chung các bài toán tích phân và ứng dụng

 

Sơ đồ tư duy các bài toán tích phân

2.2. Bảng công thức nguyên hàm của một số hàm số

Bảng công thức nguyên hàm của một số hàm số

2.3. Các dạng nguyên hàm từng phần và cách chọn u, dv

Các dạng nguyên hàm từng phần và cách chọn u, dv

2.4. Các dạng nguyên hàm vô tỉ và các phép đổi biến số lượng giác hóa

Các dạng nguyên hàm vô tỉ và các phương pháp đổi biến số lượng giác hóa

Bài tập minh họa

Bài tập 1:

Tìm các nguyên hàm sau:

a) \(I = \int\limits {\left( {3x + 1} \right)\left( {x - 2} \right)} \,dx\).

b) \(J = \int\limits {\left( {5{{\sin }^2}x - \sin x + 2} \right)\cos x} \,dx\).

Lời giải:

a) \(I = \int\limits {\left( {3x + 1} \right)\left( {x - 2} \right)} \,dx\)

\(I = \int\limits {\left( {3{x^2} - 5x - 2} \right)} \,dx = {x^3} - \frac{{5{x^2}}}{2} - 2x + C.\)

b) \(J = \int\limits {\left( {5{{\sin }^2}x - \sin x + 2} \right)\cos x} \,dx\)

Đặt: \(t = \sin x \Rightarrow dt = \cos xdx\) 

Khi đó: \(J = \int\limits {\left( {5{t^2} - t + 2} \right)} \,dt = \frac{{5{t^3}}}{3} - \frac{{{t^2}}}{2} + 2t + C = \frac{5}{3}{\sin ^3}x - \frac{{{{\sin }^2}x}}{2} + 2\sin x + C.\)

Bài tập 2: 

Tính các tích phân sau:

a)  \(I=\int_{1}^{3}x(3x+2lnx)dx.\)

b)  \(I=\int_{1}^{2}\frac{x^2+ln^2x}{x}dx.\)

c) \(I = \int\limits_{\frac{{\sqrt 2 }}{2}}^1 {\frac{{\sqrt {1 - {x^2}} }}{{{x^2}}}dx} .\)

Lời giải:

a) \(I=\int_{1}^{2}3x^2dx+\int_{1}^{2}2xlnxdx\)
Đặt \(I_1=\int_{1}^{2}3x^2dx; I_2=\int_{1}^{2}2xlnxdx\)
\(I_1=\int_{1}^{2}3x^2dx=x^3\bigg |^2_1=7.\)
\(I_2=\int_{1}^{2}lnxd(x^2)=(x^2lnx)\bigg|^2_1-\int_{1}^{2}xdx=4ln2- \frac{x^2}{2}\bigg|^2_1=4ln2-\frac{3}{2}.\)
Vậy \(I=I_1+I_2=4ln2-\frac{11}{2}.\)

b) Ta tách tích phân I như sau: \(I=\int_{1}^{2}\frac{x^2+ln^2x}{x}dx=\int_{1}^{2}xdx+\int_{1}^{2}\frac{ln^2x}{x}dx\)
\(I_1=\int_{1}^{2}xdx=\frac{x^2}{2}\bigg|^2_1=\frac{3}{2}\)
\(I_2=\int_{1}^{2}\frac{ln^2x}{x}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{1}{x}dx\)
Đổi cận: \(x=2\Rightarrow t=ln2;x=1\Rightarrow t=0\)
\(I_2=\int_{0}^{ln2}t^2dt=\frac{t^3}{3}\bigg |^{ln2}_0=\frac{ln^32}{3}\)
Vậy \(I=I_1+I_2=\frac{3}{2}+\frac{ln^32}{3}.\)

c) \(I = \int\limits_{\frac{{\sqrt 2 }}{2}}^1 {\frac{{\sqrt {1 - {x^2}} }}{{{x^2}}}dx} .\)

Đặt \(x = \cos t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right] \Rightarrow dx = - \sin tdt\)

Đổi cận: \(\left\{ \begin{array}{l} x = \frac{{\sqrt 2 }}{2} \Rightarrow t = \frac{\pi }{4}\\ x = 1 \Rightarrow t = 0 \end{array} \right.\)

Khi đó: 

\(\begin{array}{l} I = - \int\limits_{\frac{\pi }{4}}^0 {\frac{{\sqrt {1 - {{\cos }^2}t} .\sin t}}{{{{\cos }^2}t}}dt} = \int\limits_0^{\frac{\pi }{4}} {\frac{{\left| {\sin t} \right|.\sin t}}{{{{\cos }^2}t}}dt} \\ = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}t}} - 1} \right)dt} = \left. {\left( {\tan t - t} \right)} \right|_0^{\frac{\pi }{4}} = 1 - \frac{\pi }{4}. \end{array}\)

Bài tập 3: 

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 + x, trục hoành và hai đường thẳng x = 0, x = 1.

Lời giải:

Diện tích hình phẳng cần tính là: \(S=\int_{0}^{1}\left | x^2+x \right |dx\)
Với \(x\in [0;1]\Rightarrow S=\int_{0}^{1}(x^2+x)dx\)
Suy ra \(S=(\frac{x^3}{3}+\frac{x^2}{2})\bigg |^1_0=\frac{5}{6}.\)
Vậy \(S=\frac{5}{6}\).

Bài tập 4:

Cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{{1 + \sqrt {4 - 3{\rm{x}}} }},y = 0,x = 0,x = 1\) quay quanh trục Ox. Tính thể tích V của khối tròn xoay tạo thành.

Lời giải:

Thể tích cần tìm: \(V = \pi \int\limits_0^1 {\frac{{dx}}{{{{\left( {1 + \sqrt {4 - 3x} } \right)}^2}}}}\)

Đặt:\(t = \sqrt {4 - 3x} \Rightarrow dt = - \frac{3}{{2\sqrt {4 - 3x} }}dx \Leftrightarrow dx = - \frac{2}{3}tdt\left( {x = 0 \Rightarrow t = 2;x = 1 \Rightarrow t = 1} \right)\)

Khi đó: 

\(\begin{array}{l} V = \frac{{2\pi }}{3}\int\limits_1^2 {\frac{t}{{{{\left( {1 + t} \right)}^2}}}dt} = \frac{{2\pi }}{3}\int\limits_1^2 {\left( {\frac{1}{{1 + t}} - \frac{1}{{{{\left( {1 + t} \right)}^2}}}} \right)dt} \\ = \left. {\frac{{2\pi }}{3}\left( {\ln \left| {1 + t} \right| + \frac{1}{{1 + t}}} \right)} \right|_1^2 = \frac{\pi }{9}\left( {6\ln \frac{3}{2} - 1} \right). \end{array}\)

4. Luyện tập Bài 4 Chương 3 Toán 12

Bài ôn tập chương Nguyên hàm - Tích phân và ứng dụng sẽ giúp các em hệ thống lại kiến thức của toàn bộ các bài đã học thông qua các sơ đồ, cùng với đó là các bảng tra cứu nhanh nguyên hàm các hàm số quen thuộc,...sẽ giúp các em ghi nhớ bài học tốt hơn.

4.1 Trắc nghiệm về Ôn tập Nguyên hàm, Tích phân và Ứng dụng

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Ôn tập chương 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

4.2 Bài tập SGK và Nâng Cao về Ôn tập Nguyên hàm, Tích phân và Ứng dụng

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Ôn tập chương 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 2 trang 126 SGK Giải tích 12

Bài tập 3 trang 126 SGK Giải tích 12

Bài tập 4 trang 126 SGK Giải tích 12

Bài tập 5 trang 127 SGK Giải tích 12

Bài tập 6 trang 127 SGK Giải tích 12

Bài tập 7 trang 127 SGK Giải tích 12

Bài tập 1 trang 128 SGK Giải tích 12

Bài tập 2 trang 128 SGK Giải tích 12

Bài tập 3 trang 128 SGK Giải tích 12

Bài tập 4 trang 128 SGK Giải tích 12

Bài tập 5 trang 128 SGK Giải tích 12

Bài tập 6 trang 128 SGK Giải tích 12

5. Hỏi đáp về Bài 4 Chương 3 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

-- Mod Toán Học 12 HỌC247

Được đề xuất cho bạn