RANDOM

Bài tập 2 trang 126 SGK Giải tích 12

Giải bài 2 tr 126 sách GK Toán GT lớp 12

a) Phát biểu định nghĩa tích phân của hàm số f(x) trên một đoạn.

b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.

ADSENSE

Gợi ý trả lời bài 2

Câu a.

Định nghĩa tích phân của hàm số f(x) trên một đoạn:

Cho hàm \(f(x)\) liên tục trên khoảng K và a, b là hai số bất kỳ thuộc K. Nếu \(F(x)\) là một nguyên hàm của \(f(x)\) thì hiệu số \(F(b)-F(a)\) được gọi là tích phân của \(f(x)\) từ a đến b và ký hiệu là \(\int\limits_a^b {f(x)dx} .\) Trong trường hợp \(a<b\) thì \(\int\limits_a^b {f(x)dx}\) là tích phân của \(f\) trên \([a;b].\)

Câu b.
Các tính chất của tích phân:

Cho các hàm số \(f(x),\,g(x)\) liên tục trên K và \(a,b,c\) là ba số thuộc K.

  • \(\,\int\limits_a^a {f(x)dx = 0}\)
  • \(\int\limits_a^b {f(x)dx = - \int\limits_b^a {f(x)dx} }\)
  • \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx} + \int\limits_c^b {f(x)dx} }\)
  • \(\int\limits_a^b {k.f(x)dx = k\int\limits_a^b {f(x)dx} }\)
  • \(\int\limits_a^b {[f(x) \pm g(x)]dx = \int\limits_a^b {f(x)dx} \pm \int\limits_a^b {g(x)dx} }\)

-- Mod Toán 12 HỌC247

Nếu bạn thấy gợi ý trả lời Bài tập 2 trang 126 SGK Giải tích 12 HAY thì click chia sẻ 

 

RANDOM