Giải bài 1 tr 126 sách GK Toán GT lớp 12
a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng.
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.
Gợi ý trả lời bài 1
Câu a
Khái niệm nguyên hàm của hàm số f(x) trên một khoảng.
Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của \(\mathbb{R}.\)
- Định nghĩa:
Cho hàm số \(f(x)\) xác định trên K.
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên K nếu \(F'(x) = f(x)\) với mọi \(x \in K.\)
- Định lý 1:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số C, hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên K.
- Định lý 2:
Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì mọi nguyên hàm của \(f(x)\) trên K đều có dạng \(F(x)+C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(\int f(x)dx.\)
Khi đó : \(\int f(x)dx=F(x)+C,C\in \mathbb{R}.\)
Câu b
Phương pháp tính nguyên hàm từng phần
- Định lí:
Nếu hai hàm số \(u=u(x)\) và \(v=v(x)\) có đạo hàm và liên tục trên K thì:
\(\int {u(x)v'(x)dx} = u(x)v(x) - \int {u'(x)v(x)dx}\)
- Một số dạng thường gặp:
Dạng 1: \(\int {P(x).{e^{{\rm{ax}} + b}}dx\,,\,\,\int {P(x)\sin ({\rm{ax}} + b)dx\,,\,\int {P(x)c{\rm{os}}({\rm{ax}} + b)dx} } }\)
Cách giải: Đặt \(u = P(x)\,,\,dv = {e^{{\rm{ax}} + b}}dx\,\) hoặc \(dv = \sin (ax + b)dx,\,\,dv = \cos (ax + b)dx.\)
Dạng 2: \(\int {P(x)\ln ({\rm{ax}} + b)dx}\)
Cách giải: Đặt \(u = \ln ({\rm{ax}} + b)\,,\,dv = P(x)dx.\)
-- Mod Toán 12 HỌC247
-
Tìm m khác 0 để (y = frac{{mx}}{{{x^2} + 1}}) đạt giá trị lớn nhất tại x=1 trên [-2;2]
bởi Đình Khoa Khoa 20/07/2022
Tìm m khác 0 để y=mx/x^2+1 đạt giá trị lớn nhất tại x=1 trên [-2;2]
Theo dõi (0) 2 Trả lời -
Một ô tô đang chạy với vận tốc \(\displaystyle 10m/s\) thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(\displaystyle v\left( t \right) = - 5t + 10\left( {m/s} \right)\), trong đó \(\displaystyle t\) là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu phanh. Cho biết từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển bao nhiêu mét?
bởi Ho Ngoc Ha 25/04/2022
Theo dõi (0) 1 Trả lời -
Thể tích khối tròn xoay tạo bởi phép quay quanh trục \(\displaystyle Ox\) của hình phẳng giới hạn bởi các đường sau \(\displaystyle y = {\sin ^{\frac{3}{2}}}x,y = 0,x = 0\) và \(\displaystyle x = \frac{\pi }{2}\) bằng
bởi Lê Nhật Minh 25/04/2022
Theo dõi (0) 1 Trả lời -
Hãy cho biết diện tích của hình phẳng được giới hạn bởi các đường \(\displaystyle y = \tan x,y = 0,x = - \frac{\pi }{4}\) và \(\displaystyle x = \frac{\pi }{4}\) bằng
bởi Thùy Trang 26/04/2022
Theo dõi (0) 1 Trả lời -
Thực hiện tính: \(\displaystyle \int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {\frac{{x\left( {1 + {x^2} + {x^4}} \right)}}{{1 + {x^2}}}dx} \)
bởi An Vũ 25/04/2022
Theo dõi (0) 1 Trả lời -
Hãy cho biết thể tích của khối tròn xoay tạo nên do quay quanh trục \(\displaystyle Ox\) hình phẳng giới hạn bởi các đường \(\displaystyle y = {\left( {1 - x} \right)^2},y = 0\), \(\displaystyle x = 0\) và \(\displaystyle x = 2\) bằng
bởi lê Phương 26/04/2022
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 2 trang 126 SGK Giải tích 12
Bài tập 3 trang 126 SGK Giải tích 12
Bài tập 4 trang 126 SGK Giải tích 12
Bài tập 5 trang 127 SGK Giải tích 12
Bài tập 6 trang 127 SGK Giải tích 12
Bài tập 7 trang 127 SGK Giải tích 12
Bài tập 1 trang 128 SGK Giải tích 12
Bài tập 2 trang 128 SGK Giải tích 12
Bài tập 3 trang 128 SGK Giải tích 12
Bài tập 4 trang 128 SGK Giải tích 12
Bài tập 5 trang 128 SGK Giải tích 12
Bài tập 6 trang 128 SGK Giải tích 12
Bài tập 41 trang 175 SGK Toán 12 NC
Bài tập 42 trang 175 SGK Toán 12 NC
Bài tập 43 trang 176 SGK Toán 12 NC
Bài tập 44 trang 176 SGK Toán 12 NC
Bài tập 45 trang 176 SGK Toán 12 NC
Bài tập 46 trang 176 SGK Toán 12 NC
Bài tập 47 trang 176 SGK Toán 12 NC
Bài tập 48 trang 176 SGK Toán 12 NC
Bài tập 49 trang 176 SGK Toán 12 NC
Bài tập 50 trang 176 SGK Toán 12 NC
Bài tập 51 trang 176 SGK Toán 12 NC
Bài tập 52 trang 177 SGK Toán 12 NC
Bài tập 53 trang 177 SGK Toán 12 NC
Bài tập 54 trang 177 SGK Toán 12 NC
Bài tập 55 trang 177 SGK Toán 12 NC
Bài tập 56 trang 177 SGK Toán 12 NC
Bài tập 57 trang 177 SGK Toán 12 NC
Bài tập 58 trang 177 SGK Toán 12 NC
Bài tập 59 trang 177 SGK Toán 12 NC
Bài tập 60 trang 178 SGK Toán 12 NC
Bài tập 61 trang 178 SGK Toán 12 NC
Bài tập 62 trang 178 SGK Toán 12 NC
Bài tập 63 trang 178 SGK Toán 12 NC
Bài tập 64 trang 178 SGK Toán 12 NC
Bài tập 65 trang 178 SGK Toán 12 NC
Bài tập 66 trang 179 SGK Toán 12 NC
Bài tập 67 trang 179 SGK Toán 12 NC
Bài tập 3.43 trang 180 SBT Toán 12
Bài tập 3.44 trang 180 SBT Toán 12
Bài tập 3.45 trang 181 SBT Toán 12
Bài tập 3.46 trang 181 SBT Toán 12
Bài tập 3.47 trang 181 SBT Toán 12
Bài tập 3.48 trang 181 SBT Toán 12
Bài tập 3.49 trang 182 SBT Toán 12
Bài tập 3.50 trang 182 SBT Toán 12
Bài tập 3.51 trang 182 SBT Toán 12
Bài tập 3.52 trang 182 SBT Toán 12
Bài tập 3.53 trang 183 SBT Toán 12
Bài tập 3.54 trang 183 SBT Toán 12
Bài tập 3.55 trang 183 SBT Toán 12
Bài tập 3.56 trang 183 SBT Toán 12
Bài tập 3.67 trang 183 SBT Toán 12
Bài tập 3.58 trang 184 SBT Toán 12