Giải bài 2 tr 10 sách GK Toán GT lớp 12
Tìm các khoảng đơn điệu của các hàm số:
a) \(y = \frac{{3x + 1}}{{1 - x}}\).
b) \(y = \frac{{{x^2} - 2x}}{{1 - x}}\).
c) \(y = \sqrt {{x^2} - x - 20} \).
d) \(y = \frac{{2x}}{{{x^2} - 9}}\).
Hướng dẫn giải chi tiết bài 2
Phương pháp giải:
Với bài toán tìm khoản đơn điệu của hàm số, ta giải theo các bước sau:
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Tính đạo hàm \(f'(x)=0\). Tìm các điểm \(x_i\) (i= 1 , 2 ,..., n) mà tại đó đạo hàm bằng 0 hoặc không xác định.
Bước 3: Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.
Bước 4: Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Lời giải:
Với các bước làm như trên chúng ta làm câu a, b, c, d bài 2 như sau:
Câu a:
Xét hàm số \(y = \frac{{3x + 1}}{{1 - x}}\)
Tập xác định:\(D = \mathbb{R} \setminus \left \{ 1 \right \}\) .
\(y'=\frac{4}{(1-x)^{2}}> 0, \forall x \neq 1\).
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng: \(( -\infty; 1), (1 ; +\infty)\).
Nhận xét: Xét hàm số phân thức bậc nhât trên bậc nhất (Hàm nhất biến) \(y=\frac{ax+b}{cx+d}\left ( ad-bc \ne 0,c\ne0 \right )\):
- Hàm số luôn luôn đồng biến (nghịch biến) trên các khoảng \(\left( { - \infty ; - \frac{d}{c}} \right)\) và \(\left( {-\frac{d}{c}; + \infty } \right).\)
- Công thức tính nhanh đạo hàm \(y' = \frac{{ad - bc}}{{{{(cx + d)}^2}}}.\)
Câu b:
Xét hàm số \(y = \frac{{{x^2} - 2x}}{{1 - x}}\).
Tập xác định: \(D = \mathbb{R} \setminus \left \{ 1 \right \}\).
\(y'=\frac{-x^{2}+2x-2}{(1-x)^{2}}< 0, \forall x \neq 1\) .
Bảng biến thiên:
Vậy hàm số nghịch biến trên các khoảng: \((-\infty ; 1), (1 ; +\infty)\).
Câu c:
Xét hàm số \(y = \sqrt {{x^2} - x - 20} \).
Tập xác định: D = (\(-\infty\);-4] ∪ [5 ;\(+\infty\)).
\(y'=\frac{2x-1}{2\sqrt{x^{2}-x-20}}, \forall x \in (-\infty ; -4) \cup (5 ; +\infty)\).
Bảng biến thiên:
Vậy hàm số nghịch biến trên khoảng \((-\infty ; -4)\) và đồng biến trên khoảng \((5 ; +\infty)\).
Câu d:
Xét hàm số \(y = \frac{{2x}}{{{x^2} - 9}}\).
Tập xác định : \(D = \mathbb{R} \setminus \left \{ -3 ; 3 \right \}\).
\(y'=\frac{-2(x^{2}+9)}{\left (x^{2}-9 \right )^{2}} < 0, \forall x \in D.\)
Bảng biến thiên:
Vậy hàm số nghịch biến trên các khoảng : \((-\infty ; -3), (-3 ; 3), (3 ; +\infty)\).
-- Mod Toán 12 HỌC247
-
Em hãy chứng minh rằng: Hàm số \(y = \sqrt {2x - {x^2}} \) nghịch biến trên đoạn [1;2]
bởi Ngoc Son 13/10/2022
Theo dõi (0) 1 Trả lời -
Thực hiện xét chiều biến thiên hàm số cho sau: \(f(x) = 9{x^7} - 7{x^6} + {7 \over 5}{x^5} + 12\)
bởi Minh Thắng 13/10/2022
Theo dõi (0) 1 Trả lời -
Thực hiện xét chiều biến thiên hàm số cho sau: \(f(x) = {3 \over 4}{x^4} - 2{x^3} + {3 \over 2}{x^2} - 6x + 11\)
bởi Nguyễn Phương Khanh 13/10/2022
Theo dõi (0) 1 Trả lời -
Thực hiện xét chiều biến thiên của hàm số sau: \(y=\sqrt {{x^2} + 2x + 3} \)
bởi Ngoc Son 13/10/2022
Theo dõi (0) 1 Trả lời -
Thực hiện xét chiều biến thiên của hàm số sau: \(y = {{x + 1} \over {3\sqrt x }}\)
bởi na na 12/10/2022
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
-
Cho biết \(A\left( { - 1;1} \right)\) và \(B\left( {2;4} \right)\) là hai điểm của parabol \(y = {x^2}\). Xác định điểm \(C\) thuộc parabol sao cho tiếp tuyến tại \(C\) với parabol song song với đường thẳng \(AB\).
bởi Thanh Truc 13/10/2022
Theo dõi (0) 1 Trả lời -
Thực hiện tìm giá trị của tham số \(m\) để hàm số sau \(y = \dfrac{{ - mx - 5m + 4}}{{x + m}}\) nghịch biến trên từng khoảng xác định.
bởi Hữu Trí 06/09/2022
A. \(m < 1\) hoặc \(m > 4\)
B. \(0 < m < 1\)
C. \(m > 4\)
D. \(1 \le m \le 4\)
Theo dõi (0) 1 Trả lời -
Thực hiện tìm giá trị của tham số \(m\) để hàm số \(y = {x^3} - 2m{x^2} + 12x - 7\) đồng biến trên \(\mathbb{R}\).
bởi Nhật Duy 06/09/2022
A. \(m = 4\)
B. \(m \in \left( {0; + \infty } \right)\)
C. \(m \in \left( { - \infty ;0} \right)\)
D. \( - 3 \le m \le 3\)
Theo dõi (0) 1 Trả lời -
A. \({x^2} - 7x + 12 = 0\)
B. \({x^3} + 5x + 6 = 0\)
C. \({x^4} - 3{x^2} + 1 = 0\)
D. \(2\sin x{\cos ^2}x - 2\sin x - {\cos ^2}x + 1 = 0\)
Theo dõi (0) 1 Trả lời -
Phương trình đã cho nào sau đây có nghiệm duy nhất trên \(\mathbb{R}\)?
bởi Lê Minh Bảo Bảo 06/09/2022
A. \(3{\sin ^2}x - {\cos ^2}x + 5 = 0\)
B. \({x^2} - 5x + 6 = 0\)
C. \({x^5} + {x^3} - 7 = 0\)
D. \(3\tan x - 4 = 0\)
Theo dõi (0) 1 Trả lời -
Cho biết hàm số \(y = \dfrac{x}{{\sqrt {16 - {x^2}} }}\) đồng biến trên khoảng nào?
bởi Phạm Khánh Ngọc 07/09/2022
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 1 trang 9 SGK Giải tích 12
Bài tập 3 trang 10 SGK Giải tích 12
Bài tập 4 trang 10 SGK Giải tích 12
Bài tập 5 trang 10 SGK Giải tích 12
Bài tập 4 trang 8 SGK Giải tích 12 nâng cao
Bài tập 5 trang 8 SGK Giải tích 12 Nâng cao
Bài tập 7 trang 8 SGK Giải tích 12 Nâng cao
Bài tập 8 trang 8 SGK Giải tích 12 Nâng cao
Bài tập 9 trang 9 SGK Giải tích 12 Nâng cao
Bài tập 10 trang 9 SGK Giải tích 12 Nâng cao
Bài tập 1.1 trang 7 SBT Toán 12
Bài tập 1.2 trang 7 SBT Toán 12
Bài tập 1.3 trang 8 SBT Toán 12
Bài tập 1.4 trang 8 SBT Toán 12
Bài tập 1.5 trang 8 SBT Toán 12
Bài tập 1.6 trang 8 SBT Toán 12
Bài tập 1.7 trang 8 SBT Toán 12
Bài tập 1.8 trang 8 SBT Toán 12
Bài tập 1.9 trang 8 SBT Toán 12
Bài tập 1.10 trang 8 SBT Toán 12
Bài tập 1.11 trang 9 SBT Toán 12
Bài tập 1.12 trang 9 SBT Toán 12
Bài tập 1.13 trang 9 SBT Toán 12
Bài tập 1.14 trang 9 SBT Toán 12
Bài tập 1.15 trang 9 SBT Toán 12
Bài tập 1.16 trang 9 SBT Toán 12
Bài tập 1 trang 7 SGK Toán 12 NC
Bài tập 2 trang 7 SGK Toán 12 NC
Bài tập 3 trang 8 SGK Toán 12 NC
Bài tập 4 trang 8 SGK Toán 12 NC
Bài tập 5 trang 8 SGK Toán 12 NC
Bài tập 6 trang 8 SGK Toán 12 NC
Bài tập 7 trang 8 SGK Toán 12 NC
Bài tập 8 trang 8 SGK Toán 12 NC