AMBIENT

Bài tập 9 trang 177 SGK Đại số & Giải tích 11

Giải bài 9 tr 177 sách GK Toán ĐS & GT lớp 11

Cho hai hàm số \(y=\frac{1}{x\sqrt{2}}\) và \(y=\frac{x^2}{\sqrt{2}}\)

Viết phương trình tiếp tuyến với đồ thị của mỗi hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.

ADSENSE

Hướng dẫn giải chi tiết bài 9

Phương pháp:

  • Lập phương trình hoành độ giao điểm.
  • Áp dụng các bước viết phương trình tiếp tuyến của đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C):\)

    Bước 1: Tính \(f'({x_0})\).

    Bước 2: Hệ số góc của tiếp tuyến với đồ thị (C) tại \(M_0\) là \(k=f'(x_0)\)

    Bước 3: Phương trình tiếp tuyến với đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C)\) là: \(y = f'({x_0}).(x - {x_0}) + {y_0}\)

Lời giải:

Toạ độ giao điểm của hai hàm số \(y=\frac{1}{x\sqrt{2}}\) và \(y=\frac{x^2}{\sqrt{2}}\) là nghiệm của hệ:

\(\left\{\begin{matrix} y=\frac{1}{x\sqrt{2}} \\ \\ y=\frac{x^2}{\sqrt{2}} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{1}{\sqrt{2}}. \end{matrix}\right.\)

Ta có với \(y=\frac{1}{x\sqrt{2}}\Rightarrow y'=-\frac{1}{\sqrt{2}x^2}\)

\(\Rightarrow y'(1)=-\frac{1}{\sqrt{2}}\)

⇒ phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{1}{x\sqrt{2}}\) tại điểm \((1;\frac{1}{\sqrt{2}})\) là \(y-\frac{1}{\sqrt{2}}=-\frac{1}{\sqrt{2}}(x-1)\)

\(\Leftrightarrow y=-\frac{1}{\sqrt{2}}x+\sqrt{2}.\)

Với \(y=\frac{x^2}{\sqrt{2}}\Rightarrow y'=\sqrt{2}x\)

\(\Rightarrow y'(1)=\sqrt{2}\)

⇒ phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{x^2}{\sqrt{2}}\) tại điểm \((1;\frac{1}{\sqrt{2}})\) là: \(y-\frac{1}{\sqrt{2}}=\sqrt{2}(x-1)\)

\(\Leftrightarrow y=\sqrt{2}x-\frac{1}{\sqrt{2}}\)

Do \(\left ( -\frac{1}{\sqrt{2}} \right ).(\sqrt{2})=-1\)

⇒ góc giữa hai tiếp tuyến \(y=-\frac{1}{\sqrt{2}}x+\sqrt{2}\) và \(y=\sqrt{2}x-\frac{1}{\sqrt{2}}\) là 900.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 9 trang 177 SGK Đại số & Giải tích 11 HAY thì click chia sẻ 

 

AMBIENT
?>