Giải bài 5.116 tr 217 SBT Toán 11
Xác định a để \(f'\left( x \right) > 0,\forall x \in R\), biết rằng \(f(x) = {x^3} + (a - 1){x^2} + 2x + 1\)
Hướng dẫn giải chi tiết
\(f'\left( x \right) = 3{x^2} + 2\left( {a - 1} \right)x + 2\)
Để \(f'\left( x \right) > 0,\forall x \in R\) thì
hoặc hay\({{{\left( {a - 1} \right)}^2} - 3.2 < 0 \Leftrightarrow {{\left( {a - 1} \right)}^2} < 6 \Leftrightarrow \left\{ \begin{array}{l}
a < 1 + \sqrt 6 \\
a > 1 - \sqrt 6
\end{array} \right.}\).
-- Mod Toán 11 HỌC247
-
Đạo hàm của hàm số \(y = {(3{x^2} - 1)^2}\) là?
bởi hà trang 24/02/2021
A. \(2(3{x^2} - 1)\)
B. \(6(3{x^2} - 1)\)
C. \(6x(3{x^2} - 1)\)
D. \(12x(3{x^2} - 1)\)
Theo dõi (0) 1 Trả lời -
Cho hàm số \(f(x)\) xác định trên \(R\backslash\left\{ 1 \right\}\) bởi \(f(x) = {{2x} \over {x - 1}}\). Giá trị của \(f'( - 1)\) bằng?
bởi Hoai Hoai 25/02/2021
A. \({{ - 1} \over 2}\)
B. \({1 \over 2}\)
C. \(- 2\)
D. Không tồn tại
Theo dõi (0) 1 Trả lời -
Cho hàm số \(y = f(x)\) có đạo hàm tại x0 là \(f'({x_0})\). Khẳng định nào sau đây là sai?
bởi khanh nguyen 25/02/2021
A. \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} {{f(x) - f({x_0})} \over {x - {x_0}}}\)
B. \(f'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} {{f({x_0} + \Delta x) - f({x_0})} \over {\Delta x}}\)
C. \(f'({x_0}) = \mathop {\lim }\limits_{h \to 0} {{f({x_0} + h) - f({x_0})} \over h}\)
D. \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} {{f(x + {x_0}) - f({x_0})} \over {x - {x_0}}}\)
Theo dõi (0) 1 Trả lời -
Tiếp tuyến tại điểm \(M\left( {1;3} \right)\) cắt đồ thị hàm số \(y = {x^3} - x + 3\) tại điểm thứ hai khác \(M\)là \(N\) Tọa độ điểm \(N\) là:
bởi Tuyet Anh 24/02/2021
A. \(N\left( { - 2; - 3} \right)\)
B. \(N\left( {1;3} \right)\)
C. \(N\left( { - 1;3} \right)\)
D. \(M\left( {2;9} \right)\)
Theo dõi (0) 1 Trả lời -
(I): \(y'' = f''\left( x \right) = {2 \over {{x^3}}}\)
(II): \(y''' = f'''\left( x \right) = - {6 \over {{x^4}}}\)
Mệnh đề nào đúng?
A. Chỉ (I)
B. Chỉ (II) đúng
C. Cả hai đều đúng
D. Cả hai đều sai.
Theo dõi (0) 1 Trả lời -
Cho hàm số \(f\left( x \right) = {\left( {\sqrt x - {1 \over {\sqrt x }}} \right)^3}\) Hàm số có đạo hàm \(f'\left( x \right)\) bằng:
bởi Nhật Duy 25/02/2021
A. \({3 \over 2}\left( {\sqrt x + {1 \over {\sqrt x }} + {1 \over {x\sqrt x }} + {1 \over {{x^2}\sqrt x }}} \right)\)
B. \(x\sqrt x - 3\sqrt x + {3 \over {\sqrt x }} - {1 \over {x\sqrt x }}\)
C. \({3 \over 2}\left( { - \sqrt x + {1 \over {\sqrt x }} + {1 \over {x\sqrt x }} - {1 \over {{x^2}\sqrt x }}} \right)\)
D. \({3 \over 2}\left( {\sqrt x - {1 \over {\sqrt x }} - {1 \over {x\sqrt x }} + {1 \over {{x^2}\sqrt x }}} \right)\)
Theo dõi (0) 1 Trả lời -
A. \(y = {{{x^3} + 1} \over x}\)
B. \(y = {{3\left( {{x^2} + x} \right)} \over {{x^3}}}\)
C.\(y = {{{x^3} + 5x - 1} \over x}\)
D. \(y = {{2{x^2} + x - 1} \over x}\)
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Bài tập 5.114 trang 217 SBT Toán 11
Bài tập 5.115 trang 217 SBT Toán 11
Bài tập 5.117 trang 217 SBT Toán 11
Bài tập 5.118 trang 217 SBT Toán 11
Bài tập 5.119 trang 218 SBT Toán 11
Bài tập 5.120 trang 218 SBT Toán 11
Bài tập 5.121 trang 218 SBT Toán 11
Bài tập 5.122 trang 218 SBT Toán 11
Bài tập 5.123 trang 218 SBT Toán 11
Bài tập 5.124 trang 218 SBT Toán 11
Bài tập 5.125 trang 218 SBT Toán 11
Bài tập 5.126 trang 218 SBT Toán 11
Bài tập 5.127 trang 218 SBT Toán 11
Bài tập 5.128 trang 219 SBT Toán 11
Bài tập 5.129 trang 219 SBT Toán 11
Bài tập 5.130 trang 219 SBT Toán 11
Bài tập 5.131 trang 219 SBT Toán 11
Bài tập 49 trang 220 SGK Toán 11 NC
Bài tập 50 trang 221 SGK Toán 11 NC
Bài tập 51 trang 221 SGK Toán 11 NC
Bài tập 52 trang 221 SGK Toán 11 NC
Bài tập 53 trang 221 SGK Toán 11 NC
Bài tập 54 trang 221 SGK Toán 11 NC
Bài tập 55 trang 221 SGK Toán 11 NC
Bài tập 56 trang 221 SGK Toán 11 NC
Bài tập 57 trang 222 SGK Toán 11 NC
Bài tập 58 trang 222 SGK Toán 11 NC
Bài tập 59 trang 222 SGK Toán 11 NC
Bài tập 60 trang 222 SGK Toán 11 NC
Bài tập 61 trang 222 SGK Toán 11 NC