AMBIENT
  • Câu hỏi:

    Với giá trị nào của \(m\) thì phương trình \(\left( {m + 2} \right)\sin 2x + m{\cos ^2}x = m - 2 + m{\sin ^2}x\) có nghiệm?

    • A. \( - 8 < m < 0\).
    • B. \(\left[ \begin{array}{l}m > 0\\m <  - 8\end{array} \right.\).
    • C. \( - 8 \le m \le 0\).
    • D. \(\left[ \begin{array}{l}m \ge 0\\m \le  - 8\end{array} \right.\).

    Lời giải tham khảo:

    Đáp án đúng: D

    \(\begin{array}{l}\left( {m + 2} \right)\sin 2x + m{\cos ^2}x = m - 2 + m{\sin ^2}x\\ \Leftrightarrow \left( {m + 2} \right)\sin 2x + m\frac{{1 + \cos 2{\rm{x}}}}{2} = m - 2 + m\frac{{1 - \cos 2{\rm{x}}}}{2}\\ \Leftrightarrow \left( {m + 2} \right)\sin 2x + m\cos 2{\rm{x}} = m - 2\end{array}\)

    Phương trình có nghiệm khi và chỉ khi \({\left( {m + 2} \right)^2} + {m^2} \ge {\left( {m - 2} \right)^2} \Leftrightarrow {m^2} + 8m \ge 0 \Leftrightarrow \left[ \begin{array}{l}m \ge 0\\m \le  - 8\end{array} \right.\)

    ADSENSE

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AMBIENT
?>