• Câu hỏi:

    Trong mặt phẳng với hệ trục tọa độ \(Oxy\) Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình: \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right).\) Phép vị tự tâm \(I\) tỉ số \(k\) biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}.\) Tìm \(k.\)

    • A. 1.
    • B. 2.
    • C. 3.
    • D. 4.

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta lấy điểm \(A\left( {1;1} \right) \in {\Delta _1}.\) Khi đó

    \(A' = {V_{\left( {I,k} \right)}}\left( A \right) \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x' = kx + \left( {1 - k} \right)a}\\{y' = ky + \left( {1 - k} \right)b}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = k + \left( {1 - k} \right)2}\\{y' = k + \left( {1 - k} \right)1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = 2 - k}\\{y' = 1}\end{array}} \right.\)

    Mà \(A' \in {\Delta _2} \Rightarrow x' - 2y' + 4 = 0 \Rightarrow 2 - k - 2.1 + 4 = 0 \Rightarrow k = 4.\)

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC