YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu số phức z thỏa mãn \(\left| {z - 2i} \right| = \sqrt 2 \) và \(z^2\) là số thuần ảo?

    • A. 3
    • B. 1
    • C. 2
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: C

    Phương pháp:

    Gọi số phức đó là \(z = a + bi,\left( {a,b \in R} \right).\) Tìm điều kiện của \(a, b\) 

    Cách giải:

    Gọi số phức đó là \(z = a + bi,\left( {a,b \in R} \right).\)Ta có:

    \(\left| {z - 2i} \right| = \sqrt 2  \Leftrightarrow \left| {a + bi - 2i} \right| = \sqrt 2  \Leftrightarrow {a^2} + {\left( {b - 2} \right)^2} = 2\left( 1 \right)\) 

    \({z^2} = {\left( {a + bi} \right)^2} = \left( {{a^2} - {b^2}} \right) + 2abi\) là số thuần ảo \( \Rightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}
    a = b\\
    a =  - b
    \end{array} \right.\) 

    +) \(a=b\) Thay vào (1): \({a^2} + {\left( {a - 2} \right)^2} = 2 \Leftrightarrow 2{a^2} - 4a + 2 = 0 \Leftrightarrow a = 1 = b \Rightarrow z = 1 + i\) 

    +) \(a=-b\) Thay vào (1): \({a^2} + {\left( { - a - 2} \right)^2} = 2 \Leftrightarrow 2{a^2} + 4a + 2 = 0 \Leftrightarrow a =  - 1,b = 1 \Rightarrow z =  - 1 + i\) 

    Vậy, có 2 số phức z thỏa mãn yêu cầu đề bài.

    ATNETWORK

Mã câu hỏi: 69317

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON