Giải bài 2.57 tr 86 SBT Toán 11
Xếp ngẫu nhiên ba người đàn ông, hai người đàn bà và một đứa bé vào ngồi trên 6 cái ghế xếp thành hàng ngang. Tính xác suất sao cho
a) Đứa bé ngồi giữa hai người đàn bà;
b) Đứa bé ngồi giữa hai người đàn ông.
Hướng dẫn giải chi tiết
Không gian mẫu gồm các hoán vị của 6 người do đó n(Ω) = 6!.
Kí hiệu A là biến cố : "Đứa bé được xếp giữa hai người đàn bà";
Để tạo nên một cách xếp mà đứa bé được xếp giữa hai người đàn bà, ta tiến hành như sau:
- Xếp đứa bé ngồi vào ghế thứ hai đến ghế thứ năm. Có 4 cách.
- Ứng với mỗi cách xếp đứa bé, có 2 cách xếp hai người đàn bà.
- Khi đã xếp hai người đàn bà và đứa bé, xếp ba người đàn ông vào các chỗ còn lại. Có 3! cách.
Theo quy tắc nhân, ta có n(A) = 4.2.3! = 48
Từ đó \(P\left( A \right) = \frac{{n(A)}}{{n({\rm{\Omega }})}} = \frac{{48}}{{6!}} = \frac{1}{{15}}\).
b) B là biến cố: “ Đứa bé được xếp giữa hai người đàn ông ”.
Để tạo nên một cách xếp mà đứa bé ngồi giữa hai người đàn ông, ta tiến hành như sau:
- Xếp đứa bé vào các ghế thứ hai đến thứ năm. Có 4 cách.
- Chọn hai trong số ba người đàn ông. Có \(C_3^2 = 3\) cách.
- Xếp hai người đàn ông ngồi hai bên đứa bé. Có 2 cách.
- Xếp ba người còn lại vào ba chỗ còn lại. Có 3! cách.
Theo quy tắc nhân, ta có
\(n\left( B \right) = 4.C_3^2.2.3! = 144\).
Vậy \(P\left( B \right) = \frac{{n(B)}}{{n({\rm{\Omega }})}} = \frac{{144}}{{6!}} = \frac{1}{5}\).
-- Mod Toán 11 HỌC247
-
Trong bộ môn Toán, thầy giáo có 40 câu hỏi khác nhau gồm 5 câu hỏi khó, 15 câu hỏi trung bình, 20 câu hỏi dễ
bởi Bo Bo
08/02/2017
Trong bộ môn Toán, thầy giáo có 40 câu hỏi khác nhau gồm 5 câu hỏi khó, 15 câu hỏi trung bình, 20 câu hỏi dễ. Một ngân hàng đề thi mỗi đề thi có 7 câu hỏi đựơc chọn từ 40 câu hỏi đó. Tính xác suất để chọn được đề thi từ ngân hàng đề nói trên nhất thiết phải có đủ 3 loại câu hỏi (khó, trung bình, dễ) và số câu hỏi dễ không ít hơn 4.
Theo dõi (0) 1 Trả lời -
Chọn ngẫu nhiên ba đỉnh trong 12 đỉnh của đa giác, tính xác suất để 3 đỉnh được chọn tạo thành một tam giác đều
bởi minh thuận
07/02/2017
Cho đa giác đều có 12 đỉnh. Chọn ngẫu nhiên ba đỉnh trong 12 đỉnh của đa giác, tính xác suất để 3 đỉnh được chọn tạo thành một tam giác đều.
Theo dõi (0) 1 Trả lời -
Tính xác suất để trong 5 em được chọn có cả học sinh nam và học sinh nữ, có cả học sinh khối 11 và học sinh khối 12
bởi Quynh Nhu
07/02/2017
Đội dự tuyển học sinh giỏi giải toán trên máy tính cầm tay môn toán của một trường phổ thông có 4 học sinh nam khối 12, 2 học sinh nữ khối 12 và 2 học sinh nam khối 11. Để thành lập đội tuyển dự thi học sinh giỏi giải toán trên máy tính cầm tay môn toán cấp tỉnh nhà trường cần chọn 5 em từ 8 em học sinh trên. Tính xác suất để trong 5 em được chọn có cả học sinh nam và học sinh nữ, có cả học sinh khối 11 và học sinh khối 12.
Theo dõi (0) 1 Trả lời -
Hỏi có bao nhiêu cách chọn mỗi môn một em học sinh để đi dự đại hội thi đua
bởi Nguyễn Thanh Hà
07/02/2017
Trong đợt thi học sinh giỏi của tỉnh Nam Định trường THPT Xuân Trường môn Toán có 5 em đạt giải trong đó có 4 nam và 1 nữ, môn Văn có 5 em đạt giải trong đó có 1 nam và 4 nữ, môn Hóa học có 5 em đạt giải trong đó có 2 nam và 3 nữ, môn Vật lí có 5 em đạt giải trong đó có 3 nam và 2 nữ. Hỏi có bao nhiêu cách chọn mỗi môn một em học sinh để đi dự đại hội thi đua? Tính xác suất để có cả học sinh nam và nữ để đi dự đại hội?
Theo dõi (0) 1 Trả lời