Toán 6 Bài 4: Rút gọn phân số


Từ các tính chất cơ bản của phân số ở bài trước chúng ta sẽ sử dụng nó để rút gọn một phân số đưa phân số đã cho về một phân số đơn giản hơn qua bài học Rút gọn phân số

Tóm tắt lý thuyết

1.1. Cách rút gọn phân số

Quy tắc: 

Muốn rút gọn một phân số, ta chia cả tử và mẫu của phân số cho một ước chung (khác 1 và (-1)) của chúng

Ví dụ: Rút gọn phân số  \(\frac{18}{24}\)

Ta có ƯC (18, 24)=2 nên ta có: \(\frac{18}{24}=\frac{18:2}{24:2}=\frac{9}{12}\). Tiếp tục ƯC (9,12)=3 nên ta lại có: \(\frac{9}{12}=\frac{9:3}{12:3}=\frac{3}{4}\)

Vậy lần lượt ta có: \(\frac{18}{24}=\frac{9}{12}=\frac{3}{4}\)

1.2. Thế nào là phân số tối giản ?

Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà tử và mẫu chỉ có ước chung là 1 và -1.

Nhận xét: 

Muốn rút gọn nhanh phân số đã cho về phân số tối giản ta chỉ cần chia tử và mẫu của phân số cho ƯCLN của chúng.

Ví dụ: ƯCLN(24,18)=6 nên ta có: \(\frac{24}{18}=\frac{24:6}{18:6}=\frac{4}{3}\)

Chú ý:

- Phân số  \(\frac{a}{b}\) là tối giản nếu \(\left | a \right |,\left | b \right |\) là hai số nguyên tố cùng nhau

- Để rút gọn một phân số mang dấu trừ ta có thể rút gọn phân số không mang dấu sau đó thêm dấu vào kết quả

Ví dụ: Rút gọn phân số  \(\frac{-18}{12}\). Ta có ƯCLN (18,12)=6 nên ta có: \(\frac{18}{12}=\frac{18:6}{12:6}=\frac{3}{2}\Rightarrow \frac{-18}{12}=\frac{-3}{2}\)

- Khi rút gọn một phân số, ta thường rút gọn phân số đó đến tối giản

Bài tập minh họa

2.1. Bài tập cơ bản

Bài 1: Rút gọn các phân số sau: \(\frac{44}{55};\frac{-72}{81}\)

Hướng dẫn: 

Ta có:ƯCLN (44;55)=11 nên  \(\frac{44}{55}=\frac{44:11}{55:11}=\frac{4}{5}\)

ƯCLN (72;81)=9 nên \(\frac{-72}{81}=\frac{(-72):9}{81:9}=\frac{-8}{9}\)

Bài 2: Rút gọn các biểu thức sau: \(\frac{3.7}{6.14};\frac{8.7-8.5}{16}\)

Hướng dẫn: 

Ta có: \(\frac{3.7}{6.14}=\frac{3.7}{2.3.7.2}=\frac{3.7}{4.(3.7)}=\frac{(3.7):(3.7)}{4.(3.7):(3.7)}=\frac{1}{4}\)

\(\frac{8.7-8.4}{16}=\frac{8(7-4)}{16}=\frac{8.3}{16}=\frac{8.3:8}{16:8}=\frac{3}{2}\)

2.2. Bài tập nâng cao

Bài 1: Rút gọn biểu thức sau: \(\frac{2^{4}.5^{2}.11^{2}.7}{2^{3}.5^{3}.7^{2}.11}\)

Hướng dẫn: 

Ta có: \(\frac{2^{4}.5^{2}.11^{2}.7}{2^{3}.5^{3}.7^{2}.11}=\frac{2.11.(2^{3}.5^{2}.11.7)}{5.7.(2^{3}.5^{2}.11.7)}=\frac{22}{35}\)

Bài 2: Rút gọn biểu thức sau: \(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}\)

Hướng dẫn: 

Ta có: \(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}.(7+1)}{5^{11}.7^{11}.(5.7+9)}=\frac{8}{44}=\frac{8:4}{44:4}=\frac{2}{11}\)

3. Luyện tập Bài 4 Chương 3 Số học 6

Qua bài giảng Rút gọn phân số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Biết cách rút gọn phân số
  • Khái niệm phân số tối giản

3.1 Trắc nghiệm về Rút gọn phân số - Số học 6

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 6 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK về Rút gọn phân số - Số học 6

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 6 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6 tập 2

Bài tập 16 trang 15 SGK Toán 6 Tập 2

Bài tập 17 trang 15 SGK Toán 6 Tập 2

Bài tập 18 trang 15 SGK Toán 6 Tập 2

Bài tập 19 trang 15 SGK Toán 6 Tập 2

Bài tập 20 trang 15 SGK Toán 6 Tập 2

Bài tập 21 trang 15 SGK Toán 6 Tập 2

Bài tập 22 trang 15 SGK Toán 6 Tập 2

Bài tập 23 trang 16 SGK Toán 6 Tập 2

Bài tập 24 trang 16 SGK Toán 6 Tập 2

Bài tập 25 trang 16 SGK Toán 6 Tập 2

Bài tập 26 trang 16 SGK Toán 6 Tập 2

Bài tập 27 trang 16 SGK Toán 6 Tập 2

4. Hỏi đáp về Rút gọn phân số - Số học 6

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

-- Mod Toán Học 6 HỌC247

Được đề xuất cho bạn