Toán 6 Bài 7: Phép cộng phân số


Bài trước chúng ta đã tìm hiểu so sánh hai phân số. Bài tiếp theo chúng ta sẽ học về Phép cộng phân số.

Tóm tắt lý thuyết

1.1. Quy tắc

- Hai phân số cùng mẫu số: \(\frac{a}{m} + \frac{b}{m} = \frac{{a + b}}{m}\)

- Hai phân số khác mẫu số: Phải quy đồng mẫu chung rồi đưa về trường hợp trên:

\(\frac{a}{m} + \frac{b}{n} = \frac{{an}}{{m.n}} + \frac{{bm}}{{m.n}} = \frac{{a.n + b.m}}{{m.n}}\)

1.2. Tính chất

- Giao hoán: \(\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}\)

- Kết hợp: \(\left( {\frac{a}{b} + \frac{c}{d}} \right) + \frac{e}{f} = \frac{a}{b} + \left( {\frac{c}{d} + \frac{e}{f}} \right)\)

- Tổng phân số với số 0: \(\frac{a}{b} + 0 = 0 + \frac{a}{b} = \frac{a}{b}\)


Ví dụ 1:

a) Viết phân số \(\frac{7}{{15}}\) dưới dạng tổng của hai phân số tối giản có mẫu khác nhau.

b) Viết phân số \(\frac{1}{8}\) dưới dạng tổng của hai phân số dương có tử bằng 1 và mẫu khác nhau.

c) Viết các phân số bằng \(\frac{{15}}{{17}}\) có mẫu là số tự nhiên chẵn có hai chữ số.

Giải

a) Vì 7 = 2 + 5 = 3 + 4 = 1 + 6 nên có nhiều cách viết:

\(\frac{1}{3} + \frac{2}{{15}}\) hoặc \(\frac{1}{5} + \frac{4}{{15}}\) hoặc \(\frac{2}{5} + \frac{1}{{15}}\)

b) \(\frac{1}{8} = \frac{1}{{12}} + \frac{1}{{24}}\) hoặc \(\frac{1}{8} = \frac{1}{{40}} + \frac{1}{{10}}\)

c) \(\frac{{15}}{{17}} = \frac{{15.2}}{{17.2}} = \frac{{15.4}}{{17.4}}\)

Do đó có hai phân số bằng \(\frac{7}{{15}}\) là \(\frac{{30}}{{34}}\) và \(\frac{{60}}{{68}}\).


Ví dụ 2: Chứng tỏ:

\(\frac{1}{{1001}} + \frac{1}{{1002}} + \frac{1}{{1003}} + .... + \frac{1}{{1250}} > \frac{1}{5}\)

Giải

\(\begin{array}{l}\frac{1}{{1001}} > \frac{1}{{1250}}\\\frac{1}{{1002}} > \frac{1}{{1250}}\\...............\\\frac{1}{{1249}} > \frac{1}{{1250}}\end{array}\)

Vậy \(\frac{1}{{1001}} + \frac{1}{{1002}} + \frac{1}{{1003}} + .... + \frac{1}{{1250}} > \frac{1}{{1250}} + \frac{1}{{1250}} + .... + \frac{1}{{1250}} = \frac{{250}}{{1250}} = \frac{1}{5}\)

Do đó: \(\frac{1}{{1001}} + \frac{1}{{1002}} + \frac{1}{{1003}} + .... + \frac{1}{{1250}} > \frac{1}{5}\)


Ví dụ 3: Cho \(a,{\rm{ }}b,{\rm{ }}c \in \,{\mathbb{N}^*}\) và \(A = \frac{a}{{a + b}} + \frac{b}{{b + c}} + \frac{c}{{a + c}}.\) Chứng tỏ 1 < A < 2.

Giải

Vì \(\frac{a}{{a + b}} > \frac{a}{{a + b + c}};\frac{b}{{b + c}} > \frac{b}{{a + b + c}};\frac{c}{{a + c}} > \frac{c}{{a + b + c}}\)

Vậy \(A > \frac{a}{{a + b + c}} + \frac{b}{{a + b + c}} + \frac{c}{{a + b + c}} = \frac{{a + b + c}}{{a + b + c}} = 1 \Rightarrow A > 1\)

Xét \(B = \frac{b}{{a + b}} + \frac{c}{{b + c}} + \frac{a}{{a + c}},\) tương tự trên ta suy ra B > 1.

Ta có \(A{\rm{ }} + {\rm{ }}B{\rm{ }} = \left( {\frac{a}{{a + b}} + \frac{b}{{a + b}}} \right) + \left( {\frac{b}{{b + c}} + \frac{c}{{b + c}}} \right) + \left( {\frac{c}{{a + c}} + \frac{a}{{a + c}}} \right) = 3\)

Vì B > 1 nên A < 2. Vậy 1 < A < 2.

Bài tập minh họa

Bài 1: Chứng tỏ:

\(\frac{1}{{10}} + \frac{1}{{15}} + \frac{1}{{21}} + \frac{1}{{28}} + \frac{1}{{36}} + \frac{1}{{45}} = \frac{3}{{10}}.\)

Giải

\(\begin{array}{l}\frac{1}{{10}} = \frac{2}{{10}} = 2\left( {\frac{1}{4} - \frac{1}{5}} \right);\\\frac{1}{{15}} = \frac{2}{{30}} = 2\left( {\frac{1}{5} - \frac{1}{6}} \right);\\\frac{1}{{21}} = \frac{2}{{42}} = 2\left( {\frac{1}{6} - \frac{1}{7}} \right).\end{array}\)

Do đó

\(\frac{1}{{10}} + \frac{1}{{15}} + \frac{1}{{21}} + \frac{1}{{28}} + \frac{1}{{36}} + \frac{1}{{45}} = 2\left( {\frac{1}{4} - \frac{1}{5} + \frac{1}{5} - \frac{1}{6} + \frac{1}{6} - \frac{1}{7} + ... + \frac{1}{9} - \frac{1}{{10}}} \right)\)

\( = 2\left( {\frac{1}{4} - \frac{1}{{10}}} \right) = 2\left( {\frac{5}{{20}} - \frac{2}{{20}}} \right) = 2.\frac{3}{{20}} = \frac{3}{{10}}\)


Bài 2: Tính \(A = \frac{{11}}{{1.3}} + \frac{{11}}{{3.5}} + ... + \frac{{11}}{{97.99}}\)

Giải

\(A = \frac{{11}}{2}\left( {\frac{2}{{1.3}} + \frac{2}{{3.5}} + .... + \frac{2}{{97.99}}} \right) = \frac{{11}}{2}\left[ {\left( {\frac{1}{1} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{5}} \right) + ... + \left( {\frac{1}{{91}} - \frac{1}{{99}}} \right)} \right]\)

\(A = \frac{{11}}{2}\left( {1 - \frac{1}{{99}}} \right) = \frac{{11}}{2}.\frac{{98}}{{99}} = \frac{{49}}{9}.\)


Bài 3: Tìm x biết:

\(\frac{1}{3} + \frac{1}{6} + \frac{1}{{10}} + ... + \frac{2}{{x(x + 1)}} = \frac{{1999}}{{2001}}\)

Giải

\(\frac{1}{3} + \frac{1}{6} + \frac{1}{{10}} + ... + \frac{2}{{x(x + 1)}} = \frac{2}{{2.3}} + \frac{2}{{3.4}} + \frac{2}{{4.5}} + \frac{2}{{x(x + 1)}} = 2\left( {\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{x} - \frac{1}{{x + 1}}} \right)\)

3. Luyện tập Bài 7 Chương 3 Số học 6

Qua bài giảng Phép cộng phân số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Biết so sánh hai phân số cùng mẫu, hai phân số không cùng mẫu

3.1 Trắc nghiệm về Phép cộng phân số - Số học 6

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 6 Bài 7 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK về Phép cộng phân số - Số học 6

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 6 Bài 7 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6 tập 2

Bài tập 42 trang 26 SGK Toán 6 Tập 2

Bài tập 44 trang 26 SGK Toán 6 Tập 2

Bài tập 46 trang 27 SGK Toán 6 Tập 2

4. Hỏi đáp về Phép cộng phân số - Số học 6

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

  • Bạn nào thích làm toán thì làm chung bài này với mình nè =))

    Một con cừu được buộc ở đồng cỏ như hình vẽ:

    Sợi dây dài 10m. Thanh sắt nơi cố định sợi dây buộc con cừ dài 3m. Coi chiều dài con cừu là không đáng kể. Lấy diện tích cỏ lớn nhất mà con cừu ăn được là bao nhiêu?

    Theo dõi (0) 4 Trả lời
  • Ai giúp mình bài này với, sắp đi học rồi. hiuhiu

    Có ba vòi nước cùng chảy vào một cái bể. Nếu mở vòi thứ nhất và vòi thứ hai cùng chảy trong 6 giờ thì đầy \(\frac{3}{5}\) bể. Nếu mở vòi thứ ha và thứ ba cùng chảy trong 5 giờ thì đầy \(\frac{7}{{12}}\) bể. Nếu mở vòi thứ nhất và vòi thứ ba cùng chày trong 9 giờ thì đầy \(\frac{3}{4}\) bể. Hỏi nếu mở ba vòi cùng chảy vào bể thì bao lâu bể sẽ đầy nước?

    Theo dõi (0) 4 Trả lời
  • help meee!!!

    Bạn An uống \(\frac{1}{6}\) cốc ca cao rồi pha thêm sữa cho đầy cốc. Sau đó lại uống \(\frac{1}{3}\) cốc cacao sữa, rồi pha thêm sữa cho đầy cốc. Rồi lại uống tiếp \(\frac{1}{2}\) cốc cacao sữa, rồi pha thêm sữa cho đầy cốc. Cuối cùng uống cạn cốc cacao sữa này. Hỏi bạn An đã uống cacao hay sữa nhiều hơn.

    Theo dõi (0) 6 Trả lời

-- Mod Toán Học 6 HỌC247